Information Systems and Software Engineering: The Case for Convergence
- URL: http://arxiv.org/abs/2402.04200v1
- Date: Tue, 6 Feb 2024 17:55:42 GMT
- Title: Information Systems and Software Engineering: The Case for Convergence
- Authors: Brian Fitzgerald
- Abstract summary: The Information Systems (IS) and Software Engineering (SE) fields share a remarkable number of similarities in their historical evolution to date.
An analysis of 10 years (2001-2010) of publications in the primary journals in both fields reveals a good deal of overlap in research topics.
This article seeks to encourage such interaction, and illustrates how this might usefully occur in the area of design.
- Score: 1.14219428942199
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Information Systems (IS) and Software Engineering (SE) fields share a
remarkable number of similarities in their historical evolution to date. These
similarities are briefly outlined below. An analysis of 10 years (2001-2010) of
publications in the primary journals in both fields also reveals a good deal of
overlap in research topics. Given the challenges faced by both as young
disciplines, there is potentially much to gain from a closer interaction
between both fields than has traditionally been the case. This article seeks to
encourage such interaction, and illustrates how this might usefully occur in
the area of design. It concludes by proposing a number of practical initiatives
that could stimulate and facilitate interaction between the IS and SE fields
Related papers
- DiscipLink: Unfolding Interdisciplinary Information Seeking Process via Human-AI Co-Exploration [34.23942131024738]
In this paper, we introduce DiscipLink, a novel interactive system that facilitates collaboration between researchers and large language models (LLMs)
Based on users' topics of interest, DiscipLink initiates exploratory questions from the perspectives of possible relevant fields of study.
Our evaluation, comprising a within-subject comparative experiment and an open-ended exploratory study, reveals that DiscipLink can effectively support researchers in breaking down disciplinary boundaries.
arXiv Detail & Related papers (2024-08-01T10:36:00Z) - A Survey of Neural Code Intelligence: Paradigms, Advances and Beyond [84.95530356322621]
This survey presents a systematic review of the advancements in code intelligence.
It covers over 50 representative models and their variants, more than 20 categories of tasks, and an extensive coverage of over 680 related works.
Building on our examination of the developmental trajectories, we further investigate the emerging synergies between code intelligence and broader machine intelligence.
arXiv Detail & Related papers (2024-03-21T08:54:56Z) - Tackling Cyberattacks through AI-based Reactive Systems: A Holistic Review and Future Vision [0.10923877073891446]
This paper presents a comprehensive survey of recent advancements in AI-driven threat response systems.
The most recent survey covering the AI reaction domain was conducted in 2017.
A total of seven research challenges have been identified, pointing out potential gaps and suggesting possible areas of development.
arXiv Detail & Related papers (2023-12-11T09:17:01Z) - Federated Learning for Generalization, Robustness, Fairness: A Survey
and Benchmark [55.898771405172155]
Federated learning has emerged as a promising paradigm for privacy-preserving collaboration among different parties.
We provide a systematic overview of the important and recent developments of research on federated learning.
arXiv Detail & Related papers (2023-11-12T06:32:30Z) - Getting aligned on representational alignment [93.08284685325674]
We study the study of representational alignment in cognitive science, neuroscience, and machine learning.
Despite their overlapping interests, there is limited knowledge transfer between these fields.
We propose a unifying framework that can serve as a common language for research on representational alignment.
arXiv Detail & Related papers (2023-10-18T17:47:58Z) - Fairness in Recommender Systems: Research Landscape and Future
Directions [119.67643184567623]
We review the concepts and notions of fairness that were put forward in the area in the recent past.
We present an overview of how research in this field is currently operationalized.
Overall, our analysis of recent works points to certain research gaps.
arXiv Detail & Related papers (2022-05-23T08:34:25Z) - Evaluating the state-of-the-art in mapping research spaces: a Brazilian
case study [0.0]
Two recent works propose methods for creating research maps from scientists' publication records.
We evaluate these models' ability to predict whether a given entity will enter a new field.
We conduct a case study to showcase how these models can be used to characterize science dynamics in the context of Brazil.
arXiv Detail & Related papers (2021-04-07T18:14:41Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
Artificial Intelligence for IT Operations (AIOps) is an emerging interdisciplinary field arising in the intersection between machine learning, big data, streaming analytics, and the management of IT operations.
Main aim of the AIOPS workshop is to bring together researchers from both academia and industry to present their experiences, results, and work in progress in this field.
arXiv Detail & Related papers (2021-01-15T10:43:10Z) - What's New? Summarizing Contributions in Scientific Literature [85.95906677964815]
We introduce a new task of disentangled paper summarization, which seeks to generate separate summaries for the paper contributions and the context of the work.
We extend the S2ORC corpus of academic articles by adding disentangled "contribution" and "context" reference labels.
We propose a comprehensive automatic evaluation protocol which reports the relevance, novelty, and disentanglement of generated outputs.
arXiv Detail & Related papers (2020-11-06T02:23:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.