論文の概要: Blending gradient boosted trees and neural networks for point and
probabilistic forecasting of hierarchical time series
- arxiv url: http://arxiv.org/abs/2310.13029v1
- Date: Thu, 19 Oct 2023 09:42:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 02:08:18.016685
- Title: Blending gradient boosted trees and neural networks for point and
probabilistic forecasting of hierarchical time series
- Title(参考訳): 階層的時系列のポイント・確率予測のための勾配強化木とニューラルネットワークのブレンディング
- Authors: Ioannis Nasios, Konstantinos Vogklis
- Abstract要約: 本稿では、勾配木やニューラルネットワークファミリーに属する機械学習モデルのブレンディング手法について述べる。
これらの原則は、最近のM5コンペティションにおいて、正確性と不確実性の両方のトラックでうまく適用された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper we tackle the problem of point and probabilistic forecasting by
describing a blending methodology of machine learning models that belong to
gradient boosted trees and neural networks families. These principles were
successfully applied in the recent M5 Competition on both Accuracy and
Uncertainty tracks. The keypoints of our methodology are: a) transform the task
to regression on sales for a single day b) information rich feature engineering
c) create a diverse set of state-of-the-art machine learning models and d)
carefully construct validation sets for model tuning. We argue that the
diversity of the machine learning models along with the careful selection of
validation examples, where the most important ingredients for the effectiveness
of our approach. Although forecasting data had an inherent hierarchy structure
(12 levels), none of our proposed solutions exploited that hierarchical scheme.
Using the proposed methodology, our team was ranked within the gold medal range
in both Accuracy and the Uncertainty track. Inference code along with already
trained models are available at
https://github.com/IoannisNasios/M5_Uncertainty_3rd_place
- Abstract(参考訳): 本稿では,勾配強化木とニューラルネットワーク群に属する機械学習モデルのブレンディング手法を説明することで,ポイントと確率予測の問題に取り組む。
これらの原則は、最近のM5コンペティションにおいて、正確性と不確実性の両方のトラックでうまく適用された。
私たちの方法論の要点は
a) タスクを1日の販売のレグレッションに変換すること
b) 情報豊かな機能工学
c) 多様な最先端の機械学習モデルを作成し、
d) モデルチューニングのための検証セットを慎重に構築する。
我々は、機械学習モデルの多様性と検証例の慎重な選択が、我々のアプローチの有効性にとって最も重要な要素であると主張する。
予測データには固有の階層構造 (12 レベル) があったが,提案手法のいずれも階層的スキームを利用していない。
提案手法では,精度と不確実性の両方において金メダルの範囲内であった。
すでにトレーニング済みのモデルとともに、推論コードはhttps://github.com/IoannisNasios/M5_Uncertainty_3rd_placeで利用可能である。
関連論文リスト
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
機械学習 -- 事前訓練された機械学習モデルで、小さな"ターゲットセット"トレーニングデータを効率的に削除する -- は、最近関心を集めている。
最近の研究では、機械学習技術はこのような困難な環境では耐えられないことが示されている。
論文 参考訳(メタデータ) (2024-10-30T17:20:10Z) - MUSO: Achieving Exact Machine Unlearning in Over-Parameterized Regimes [19.664090734076712]
マシン・アンラーニング(MU)は、訓練されたモデルを特定のデータでトレーニングされたことがないかのように振る舞う。
本研究では,学習と学習のタスクを統一する交互最適化アルゴリズムを提案する。
このアルゴリズムの有効性は、数値実験によって確認され、様々なシナリオにおける未学習における優れた性能を強調している。
論文 参考訳(メタデータ) (2024-10-11T06:17:17Z) - LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
本稿では,自己注意ネットワークのためのパラメータ効率の高いディープアンサンブル手法であるLoRA-Ensembleを紹介する。
全メンバー間で重みを共有できる1つの事前学習型自己注意ネットワークを利用することで、注意投影のために、メンバー固有の低ランク行列を訓練する。
提案手法は明示的なアンサンブルよりも優れたキャリブレーションを示し,様々な予測タスクやデータセットに対して類似あるいは良好な精度を実現する。
論文 参考訳(メタデータ) (2024-05-23T11:10:32Z) - ScatterUQ: Interactive Uncertainty Visualizations for Multiclass Deep Learning Problems [0.0]
ScatterUQは、ユーザがコンテキスト駆動の不確実性設定におけるモデルパフォーマンスをよりよく理解できるように、ターゲットの可視化を提供するインタラクティブシステムである。
本稿では,Fashion-MNISTを訓練した距離認識ニューラルネットワーク上でのマルチクラス画像分類におけるモデル不確実性を説明するために,ScatterUQの有効性を示す。
以上の結果から,ScatterUQシステムは任意のマルチクラスデータセットにスケールすべきであることが示唆された。
論文 参考訳(メタデータ) (2023-08-08T21:17:03Z) - Fairness Uncertainty Quantification: How certain are you that the model
is fair? [13.209748908186606]
現代の機械学習において、グラディエント・Descent(SGD)型アルゴリズムは、学習されたモデルがランダムであることを示す訓練アルゴリズムとして、ほぼ常に使用される。
本研究では,グループフェアネスを意識した信頼区間(CI)、特にDI(Disparate Impact)とDM(Disparate Mistreatment)を意識した線形二項分類器をオンラインSGD型アルゴリズムを用いてトレーニングする場合に,不公平性テストのための信頼区間(CI)を提供する。
論文 参考訳(メタデータ) (2023-04-27T04:07:58Z) - Bayesian graph convolutional neural networks via tempered MCMC [0.41998444721319217]
畳み込みニューラルネットワークのようなディープラーニングモデルは、画像やマルチメディアタスクに長い間適用されてきた。
最近では、グラフで表現できる非構造化データにもっと注意が払われている。
これらのタイプのデータは、健康と医学、ソーシャルネットワーク、および研究データリポジトリでよく見られます。
論文 参考訳(メタデータ) (2021-04-17T04:03:25Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
少量のラベル付きテストデータのみを用いて機械学習モデルを効率的にテストする新しいフレームワークを提案する。
ベイズニューラルネットワーク(bnn)を用いたモデルアンダーテストの関心指標の推定が目的である。
論文 参考訳(メタデータ) (2021-04-11T12:14:04Z) - Causality-aware counterfactual confounding adjustment for feature
representations learned by deep models [14.554818659491644]
因果モデリングは機械学習(ML)における多くの課題に対する潜在的な解決策として認識されている。
深層ニューラルネットワーク(DNN)モデルによって学習された特徴表現を分解するために、最近提案された対実的アプローチが依然として使われている方法について説明する。
論文 参考訳(メタデータ) (2020-04-20T17:37:36Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
最も単純な推論手法の1つとして、切り詰められた最大積のBelief伝播を取り上げ、それをディープラーニングモデルの適切なコンポーネントにするために必要となるものを加えます。
このBP-Layerは畳み込みニューラルネットワーク(CNN)の最終ブロックまたは中間ブロックとして使用できる
このモデルは様々な密集予測問題に適用可能であり、パラメータ効率が高く、ステレオ、光フロー、セマンティックセグメンテーションにおける堅牢な解を提供する。
論文 参考訳(メタデータ) (2020-03-13T13:11:35Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。