Perfect quantum protractors
- URL: http://arxiv.org/abs/2310.13045v2
- Date: Thu, 29 Aug 2024 08:31:59 GMT
- Title: Perfect quantum protractors
- Authors: MichaĆ Piotrak, Marek Kopciuch, Arash Dezhang Fard, Magdalena Smolis, Szymon Pustelny, Kamil Korzekwa,
- Abstract summary: Perfect quantum protractors can only exist for systems with a well-defined total angular momentum $j$.
Perfect quantum protractors form an optimal resource for a metrological task of estimating the angle of rotation around.
- Score: 0.8246494848934447
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we introduce and investigate the concept of a perfect quantum protractor, a pure quantum state $|\psi\rangle\in\mathcal{H}$ that generates three different orthogonal bases of $\mathcal{H}$ under rotations around each of the three perpendicular axes. Such states can be understood as pure states of maximal uncertainty with regards to the three components of the angular momentum operator, as we prove that they maximise various entropic and variance-based measures of such uncertainty. We argue that perfect quantum protractors can only exist for systems with a well-defined total angular momentum $j$, and we prove that they do not exist for $j\in\{1/2,2,5/2\}$, but they do exist for $j\in\{1,3/2,3\}$ (with numerical evidence for their existence when $j=7/2$). We also explain that perfect quantum protractors form an optimal resource for a metrological task of estimating the angle of rotation around (or the strength of magnetic field along) one of the three perpendicular axes, when the axis is not $\textit{a priori}$ known. Finally, we demonstrate this metrological utility by performing an experiment with warm atomic vapours of rubidium-87, where we prepare a perfect quantum protractor for a spin-1 system, let it precess around $x$, $y$ or $z$ axis, and then employ it to optimally estimate the rotation angle.
Related papers
- Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
We present a quantum generalization of these tools through a generic bottleneck lemma.
This lemma focuses on quantum measures of distance, analogous to the classical Hamming distance but rooted in uniquely quantum principles.
Even with sublinear barriers, we use Feynman-Kac techniques to lift classical to quantum ones establishing tight lower bound $T_mathrmmix = 2Omega(nalpha)$.
arXiv Detail & Related papers (2024-11-06T22:51:27Z) - Large Angular Momentum [0.0]
We study the angular momentum/spin in the limit, $j to infty$.
The state, $(J cdot n) | j, nrangle = j |j, n rangle $, where $J$ is the angular momentum operator and $n$ stands for a generic unit vector in $R3$, is found to behave as a classical angular momentum, $ j n $.
arXiv Detail & Related papers (2024-04-23T11:15:10Z) - Geometry of degenerate quantum states, configurations of $m$-planes and invariants on complex Grassmannians [55.2480439325792]
We show how to reduce the geometry of degenerate states to the non-abelian connection $A$.
We find independent invariants associated with each triple of subspaces.
Some of them generalize the Berry-Pancharatnam phase, and some do not have analogues for 1-dimensional subspaces.
arXiv Detail & Related papers (2024-04-04T06:39:28Z) - Full quantum tomography of top quark decays [0.0]
Quantum tomography in high-energy physics processes has usually been restricted to the spin degrees of freedom.
We address the case of top quark decays $t to W b$, in which the orbital angular momentum ($L$) and the spins of $W$ and $b$ are intertwined into a 54-dimensional $LWb$ density operator.
The entanglement between $L$ and the $W$ or $b$ spin is large and could be determined for decays of single top quarks produced at the Large Hadron Collider with Run 2 data.
arXiv Detail & Related papers (2024-02-22T17:33:33Z) - Towards the "puzzle" of Chromium dimer Cr$_2$: predicting the Born-Oppenheimer rovibrational spectrum [44.99833362998488]
This paper calculates the potential energy curve for the state $X1Sigma+$ of the Cr$$$ dimer.
It is found for the first time for the whole range of internuclear distances $R$.
arXiv Detail & Related papers (2024-01-06T17:00:12Z) - Spatial Wavefunctions of Spin [0.0]
We present an alternative formulation of quantum mechanical angular momentum.
The wavefunctions are Wigner D-functions, $D_n ms (phi, theta, chi)$.
Some implications of the quantum number $n$ for fundamental particles are discussed.
arXiv Detail & Related papers (2023-07-25T15:48:56Z) - Rigorous derivation of the Efimov effect in a simple model [68.8204255655161]
We consider a system of three identical bosons in $mathbbR3$ with two-body zero-range interactions and a three-body hard-core repulsion of a given radius $a>0$.
arXiv Detail & Related papers (2023-06-21T10:11:28Z) - The Vector-Model Wavefunction: spatial description and wavepacket
formation of quantum-mechanical angular momenta [0.0]
In quantum mechanics, spatial wavefunctions describe distributions of a particle's position or momentum, but not of angular momentum $j$.
We show that a spatial wavefunction, $j_m (phi,theta,chi)$ gives a useful description of quantum-mechanical angular momentum.
arXiv Detail & Related papers (2023-05-19T06:24:53Z) - Beyond the Berry Phase: Extrinsic Geometry of Quantum States [77.34726150561087]
We show how all properties of a quantum manifold of states are fully described by a gauge-invariant Bargmann.
We show how our results have immediate applications to the modern theory of polarization.
arXiv Detail & Related papers (2022-05-30T18:01:34Z) - On quantum algorithms for the Schr\"odinger equation in the
semi-classical regime [27.175719898694073]
We consider Schr"odinger's equation in the semi-classical regime.
Such a Schr"odinger equation finds many applications, including in Born-Oppenheimer molecular dynamics and Ehrenfest dynamics.
arXiv Detail & Related papers (2021-12-25T20:01:54Z) - Quantum spin solver near saturation: QS$^3_{~}$ [0.0]
We develop a program package named QS$3$ [textipakj'u:-'es-kj'u:b] based on the (thick-restart) Lanczos method for analyzing spin-1/2 XXZ-type quantum spin models.
We show the benchmark results of QS$3$ for the low-energy excitation dispersion of the isotropic Heisenberg model on the $10times10times10$ cubic lattice.
arXiv Detail & Related papers (2021-07-02T07:06:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.