論文の概要: Approaches for Uncertainty Quantification of AI-predicted Material
Properties: A Comparison
- arxiv url: http://arxiv.org/abs/2310.13136v1
- Date: Thu, 19 Oct 2023 20:20:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 01:13:38.124693
- Title: Approaches for Uncertainty Quantification of AI-predicted Material
Properties: A Comparison
- Title(参考訳): AI予測材料特性の不確実性定量化へのアプローチ:比較
- Authors: Francesca Tavazza and Kamal Choudhary and Brian DeCost
- Abstract要約: 個別の不確実性を決定するための3つの簡単なアプローチが提示される。
本研究では,予測区間とアンサンブル手法の直接機械学習に着目した。
- 参考スコア(独自算出の注目度): 0.4037357056611557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of large databases of material properties, together with the
availability of powerful computers, has allowed machine learning (ML) modeling
to become a widely used tool for predicting material performances. While
confidence intervals are commonly reported for such ML models, prediction
intervals, i.e., the uncertainty on each prediction, are not as frequently
available. Here, we investigate three easy-to-implement approaches to determine
such individual uncertainty, comparing them across ten ML quantities spanning
energetics, mechanical, electronic, optical, and spectral properties.
Specifically, we focused on the Quantile approach, the direct machine learning
of the prediction intervals and Ensemble methods.
- Abstract(参考訳): 材料特性の大規模データベースの開発と強力なコンピュータの可用性により、機械学習(ML)モデリングは材料性能を予測するツールとして広く利用されている。
このようなMLモデルでは信頼区間が一般的に報告されるが、予測間隔、すなわち各予測の不確実性はそれほど頻繁には得られない。
そこで本研究では, エネルギー, 機械的, 電子的, 光学的, スペクトル的特性にまたがる10mlの量を比較することにより, 実装が容易な3つの方法を検討した。
具体的には、Quantileアプローチ、予測間隔の直接機械学習、およびEnsemble手法に焦点を当てた。
関連論文リスト
- Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
コンテキスト・イズ・キー (Context is Key) (CiK) は、時系列予測ベンチマークであり、様々な種類のテキストコンテキストと数値データをペアリングする。
我々は,統計モデル,時系列基礎モデル,LLMに基づく予測モデルなど,さまざまなアプローチを評価する。
実験では、文脈情報の導入の重要性を強調し、LLMに基づく予測モデルを用いた場合の驚くべき性能を示すとともに、それらの重要な欠点を明らかにした。
論文 参考訳(メタデータ) (2024-10-24T17:56:08Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - Calibrating Large Language Models with Sample Consistency [76.23956851098598]
本稿では,複数サンプルモデル生成系の分布から信頼度を導出する可能性について,一貫性の3つの尺度を用いて検討する。
その結果、一貫性に基づくキャリブレーション手法は、既存のポストホック手法よりも優れていることがわかった。
種々のLMの特性に合わせて,キャリブレーションに適した整合性指標を選択するための実用的なガイダンスを提供する。
論文 参考訳(メタデータ) (2024-02-21T16:15:20Z) - Mutual Information-calibrated Conformal Feature Fusion for
Uncertainty-Aware Multimodal 3D Object Detection at the Edge [1.7898305876314982]
3次元(3D)物体検出は、重要なロボティクスの操作であり、大きな進歩を遂げている。
本研究は,共形推論の原理と情報理論測度を統合し,モンテカルロ自由な不確実性推定を行う。
このフレームワークは、KITTIの3Dオブジェクト検出ベンチマークにおいて、不確実性に気付かない類似のメソッドと同等またはより良いパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-09-18T09:02:44Z) - Entity Aware Modelling: A Survey [22.32009539611539]
最近の機械学習の進歩により、新しい最先端の応答予測モデルが生まれている。
人口レベルで構築されたモデルは、多くのパーソナライズされた予測設定において、最適以下のパフォーマンスをもたらすことが多い。
パーソナライズされた予測では、予測性能を改善するために、異なるエンティティの固有の特性を取り入れることが目的である。
論文 参考訳(メタデータ) (2023-02-16T16:33:33Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
本稿では,モデルアーキテクチャの解釈可能性と信頼性,外挿を行うためのツールボックスを提案する。
与えられたテストポイントでの予測に対する入力データの影響、モデル予測の不確実性の推定、およびモデル予測の不可知スコアを提供する。
我々の研究は、物理学やより一般的には科学に適用されたMLにおける解釈可能性と信頼性の方法の体系的利用への道を開く。
論文 参考訳(メタデータ) (2021-08-04T16:32:59Z) - Uncertainty Prediction for Machine Learning Models of Material
Properties [0.0]
物質特性のAIベースの予測の不確実性は、物質科学におけるAIアプリケーションの成功と信頼性にとって非常に重要である。
このような個人的不確実性を得るための3つの異なるアプローチを比較し、それらを12のML物理特性で検証する。
論文 参考訳(メタデータ) (2021-07-16T16:33:55Z) - Coalitional strategies for efficient individual prediction explanation [0.0]
本稿では,関連する属性群 -- 名前付き連立 -- の検出に基づく手法を提供し,予測に影響を与える。
以上の結果から,これらの連立手法はSHapley Additive exPlanationなどの既存手法よりも効率的であることが示唆された。
論文 参考訳(メタデータ) (2021-04-01T21:00:23Z) - Spatiotemporal Attention for Multivariate Time Series Prediction and
Interpretation [17.568599402858037]
最も重要な時間ステップと変数の同時学習のための時間的注意機構(STAM)。
結果: STAMは最先端の予測精度を維持しつつ,正確な解釈可能性の利点を提供する。
論文 参考訳(メタデータ) (2020-08-11T17:34:55Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
本研究の目的は,レーザー加工が材料構造に及ぼす影響を自動予測することである。
その焦点は、統計的および機械学習の代表的なアルゴリズムのパフォーマンスに焦点を当てている。
結果は、材料設計、テスト、生産コストを削減するための体系的な方法論の基礎を設定することができる。
論文 参考訳(メタデータ) (2020-06-13T17:28:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。