論文の概要: Simultaneous Machine Translation with Tailored Reference
- arxiv url: http://arxiv.org/abs/2310.13588v1
- Date: Fri, 20 Oct 2023 15:32:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-23 22:14:09.140601
- Title: Simultaneous Machine Translation with Tailored Reference
- Title(参考訳): Tailored Reference を用いた同時機械翻訳
- Authors: Shoutao Guo, Shaolei Zhang, Yang Feng
- Abstract要約: 同時機械翻訳(SiMT)は、ソース文全体を読みながら翻訳を生成する。
既存のSiMTモデルは、異なるレイテンシで利用可能な様々なソース情報を無視して、同じ参照を使用してトレーニングされるのが一般的である。
そこで本研究では,異なるレイテンシでトレーニングしたSiMTモデルに対して,基底構造をリフレッシュして参照を調整した新しい手法を提案する。
- 参考スコア(独自算出の注目度): 35.46823126036308
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Simultaneous machine translation (SiMT) generates translation while reading
the whole source sentence. However, existing SiMT models are typically trained
using the same reference disregarding the varying amounts of available source
information at different latency. Training the model with ground-truth at low
latency may introduce forced anticipations, whereas utilizing reference
consistent with the source word order at high latency results in performance
degradation. Consequently, it is crucial to train the SiMT model with
appropriate reference that avoids forced anticipations during training while
maintaining high quality. In this paper, we propose a novel method that
provides tailored reference for the SiMT models trained at different latency by
rephrasing the ground-truth. Specifically, we introduce the tailor, induced by
reinforcement learning, to modify ground-truth to the tailored reference. The
SiMT model is trained with the tailored reference and jointly optimized with
the tailor to enhance performance. Importantly, our method is applicable to a
wide range of current SiMT approaches. Experiments on three translation tasks
demonstrate that our method achieves state-of-the-art performance in both fixed
and adaptive policies.
- Abstract(参考訳): 同時機械翻訳(SiMT)は、ソース文全体を読みながら翻訳を生成する。
しかし、既存のSiMTモデルは、異なるレイテンシで利用可能な様々なソース情報を無視して、同じ参照を使用して訓練される。
低レイテンシでのモデルトレーニングは強制的な予測をもたらす可能性があるが、高レイテンシでソースワードの順序に一致する参照を使用することでパフォーマンスが低下する。
したがって、高い品質を維持しながらトレーニング中に強制的な予測を避ける適切な参照でsimtモデルを訓練することが重要である。
本稿では,異なるレイテンシでトレーニングされたSiMTモデルに対して,基底構造を表現して参照する手法を提案する。
具体的には,強化学習によって引き起こされるテーラーを用い,テーラード参照に接地を修飾する。
SiMTモデルは、調整された基準で訓練され、性能を高めるために調整器で共同最適化される。
重要な点として,本手法は近年のSiMTの幅広いアプローチに適用可能である。
3つの翻訳課題に関する実験により,本手法は固定ポリシーと適応ポリシーの両方において最先端の性能を達成することを示した。
関連論文リスト
- PsFuture: A Pseudo-Future-based Zero-Shot Adaptive Policy for Simultaneous Machine Translation [8.1299957975257]
同時機械翻訳(SiMT)では、ストリーミングソーストークンが使用されるため、ターゲットトークンをリアルタイムで生成する必要がある。
我々は、SiMTのための最初のゼロショット適応型リード/ライトポリシーであるPsFutureを提案する。
我々は、SiMTアプリケーションのためのオフライン翻訳モデルを調整するために、新しいトレーニング戦略であるPrefix-to-Full(P2F)を導入する。
論文 参考訳(メタデータ) (2024-10-05T08:06:33Z) - Learning to Generalize to More: Continuous Semantic Augmentation for
Neural Machine Translation [50.54059385277964]
CsaNMT(Continuous Semantic Augmentation)と呼ばれる新しいデータ拡張パラダイムを提案する。
CsaNMTは各トレーニングインスタンスを、同じ意味の下で適切なリテラル式をカバーできる隣接領域で拡張する。
論文 参考訳(メタデータ) (2022-04-14T08:16:28Z) - End-to-End Training for Back-Translation with Categorical Reparameterization Trick [0.0]
バックトランスレーションは、ニューラルネットワーク翻訳(NMT)における効果的な半教師付き学習フレームワークである
事前学習されたNMTモデルは、モノリンガル文を翻訳し、他のNMTモデルのトレーニングのために合成バイリンガル文ペアを作成する。
翻訳文の離散的性質は、情報勾配が2つのNMTモデル間で流れるのを防ぐ。
論文 参考訳(メタデータ) (2022-02-17T06:31:03Z) - Universal Simultaneous Machine Translation with Mixture-of-Experts
Wait-k Policy [6.487736084189248]
同時機械翻訳(SiMT)は、原文全体を読む前に翻訳を生成する。
従来の手法では、遅延レベルが異なる複数のSiMTモデルをトレーニングする必要があるため、計算コストが大きくなる。
任意のレイテンシで最適な翻訳品質を実現するために,Mixture-of-Experts Wait-k Policyを用いた汎用SiMTモデルを提案する。
論文 参考訳(メタデータ) (2021-09-11T09:43:15Z) - Alternated Training with Synthetic and Authentic Data for Neural Machine
Translation [49.35605028467887]
ニューラルマシン翻訳(NMT)のための合成および認証データを用いた交互トレーニングを提案する。
従来の研究と比較して,ノイズの多い合成データによってNMTモデルのトレーニングが妨げられるのを防止するためのガイダンスとして,認証データを導入している。
中国語・ドイツ語・英語の翻訳タスクの実験は、我々のアプローチがいくつかの強いベースラインにまたがって性能を向上させることを示している。
論文 参考訳(メタデータ) (2021-06-16T07:13:16Z) - Meta Back-translation [111.87397401837286]
プリトレーニングされたバック翻訳モデルから擬似並列データを生成する新しい手法を提案する。
本手法は,生成する擬似並列データに対して,検証セット上で良好な処理を行うためのフォワードトランスレーションモデルを訓練するように,事前訓練されたバックトランスレーションモデルを適用するメタラーニングアルゴリズムである。
論文 参考訳(メタデータ) (2021-02-15T20:58:32Z) - Enhanced back-translation for low resource neural machine translation
using self-training [0.0]
本研究は,後進モデルの出力を用いて前方翻訳手法を用いてモデル自体を改善する自己学習戦略を提案する。
この技術は、ベースラインの低リソースであるIWSLT'14とIWSLT'15をそれぞれ11.06と1.5BLEUに改良することを示した。
改良された英語-ドイツ語の後方モデルによって生成された合成データを用いて前方モデルを訓練し、2.7BLEUで標準の後方翻訳を用いて訓練された別の前方モデルより優れていた。
論文 参考訳(メタデータ) (2020-06-04T14:19:52Z) - Explicit Reordering for Neural Machine Translation [50.70683739103066]
Transformer-based neural machine translation (NMT)では、位置符号化機構は、自己アテンションネットワークが順序依存でソース表現を学習するのに役立つ。
本研究では,トランスフォーマーベースのNMTに対して,このリオーダ情報を明示的にモデル化する新しいリオーダ手法を提案する。
WMT14, WAT ASPEC日本語訳, WMT17中国語訳の実証結果から, 提案手法の有効性が示唆された。
論文 参考訳(メタデータ) (2020-04-08T05:28:46Z) - Learning Contextualized Sentence Representations for Document-Level
Neural Machine Translation [59.191079800436114]
文書レベルの機械翻訳は、文間の依存関係をソース文の翻訳に組み込む。
本稿では,ニューラルマシン翻訳(NMT)を訓練し,文のターゲット翻訳と周辺文の双方を予測することによって,文間の依存関係をモデル化するフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-30T03:38:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。