Automatic Sensor-free Affect Detection: A Systematic Literature Review
- URL: http://arxiv.org/abs/2310.13711v1
- Date: Wed, 11 Oct 2023 13:24:27 GMT
- Title: Automatic Sensor-free Affect Detection: A Systematic Literature Review
- Authors: Felipe de Morais, Di\'ogines Goldoni, Tiago Kautzmann, Rodrigo da
Silva, Patricia A. Jaques
- Abstract summary: This paper provides a comprehensive literature review on sensor-free affect detection.
Despite the field's evident maturity, demonstrated by the consistent performance of the models, there is ample scope for future research.
There is also a need to refine model development practices and methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Emotions and other affective states play a pivotal role in cognition and,
consequently, the learning process. It is well-established that computer-based
learning environments (CBLEs) that can detect and adapt to students' affective
states can enhance learning outcomes. However, practical constraints often pose
challenges to the deployment of sensor-based affect detection in CBLEs,
particularly for large-scale or long-term applications. As a result,
sensor-free affect detection, which exclusively relies on logs of students'
interactions with CBLEs, emerges as a compelling alternative. This paper
provides a comprehensive literature review on sensor-free affect detection. It
delves into the most frequently identified affective states, the methodologies
and techniques employed for sensor development, the defining attributes of
CBLEs and data samples, as well as key research trends. Despite the field's
evident maturity, demonstrated by the consistent performance of the models and
the application of advanced machine learning techniques, there is ample scope
for future research. Potential areas for further exploration include enhancing
the performance of sensor-free detection models, amassing more samples of
underrepresented emotions, and identifying additional emotions. There is also a
need to refine model development practices and methods. This could involve
comparing the accuracy of various data collection techniques, determining the
optimal granularity of duration, establishing a shared database of action logs
and emotion labels, and making the source code of these models publicly
accessible. Future research should also prioritize the integration of models
into CBLEs for real-time detection, the provision of meaningful interventions
based on detected emotions, and a deeper understanding of the impact of
emotions on learning.
Related papers
Err
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.