Automatic Sensor-free Affect Detection: A Systematic Literature Review
- URL: http://arxiv.org/abs/2310.13711v1
- Date: Wed, 11 Oct 2023 13:24:27 GMT
- Title: Automatic Sensor-free Affect Detection: A Systematic Literature Review
- Authors: Felipe de Morais, Di\'ogines Goldoni, Tiago Kautzmann, Rodrigo da
Silva, Patricia A. Jaques
- Abstract summary: This paper provides a comprehensive literature review on sensor-free affect detection.
Despite the field's evident maturity, demonstrated by the consistent performance of the models, there is ample scope for future research.
There is also a need to refine model development practices and methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Emotions and other affective states play a pivotal role in cognition and,
consequently, the learning process. It is well-established that computer-based
learning environments (CBLEs) that can detect and adapt to students' affective
states can enhance learning outcomes. However, practical constraints often pose
challenges to the deployment of sensor-based affect detection in CBLEs,
particularly for large-scale or long-term applications. As a result,
sensor-free affect detection, which exclusively relies on logs of students'
interactions with CBLEs, emerges as a compelling alternative. This paper
provides a comprehensive literature review on sensor-free affect detection. It
delves into the most frequently identified affective states, the methodologies
and techniques employed for sensor development, the defining attributes of
CBLEs and data samples, as well as key research trends. Despite the field's
evident maturity, demonstrated by the consistent performance of the models and
the application of advanced machine learning techniques, there is ample scope
for future research. Potential areas for further exploration include enhancing
the performance of sensor-free detection models, amassing more samples of
underrepresented emotions, and identifying additional emotions. There is also a
need to refine model development practices and methods. This could involve
comparing the accuracy of various data collection techniques, determining the
optimal granularity of duration, establishing a shared database of action logs
and emotion labels, and making the source code of these models publicly
accessible. Future research should also prioritize the integration of models
into CBLEs for real-time detection, the provision of meaningful interventions
based on detected emotions, and a deeper understanding of the impact of
emotions on learning.
Related papers
- A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - Modeling User Preferences via Brain-Computer Interfacing [54.3727087164445]
We use Brain-Computer Interfacing technology to infer users' preferences, their attentional correlates towards visual content, and their associations with affective experience.
We link these to relevant applications, such as information retrieval, personalized steering of generative models, and crowdsourcing population estimates of affective experiences.
arXiv Detail & Related papers (2024-05-15T20:41:46Z) - How are Prompts Different in Terms of Sensitivity? [50.67313477651395]
We present a comprehensive prompt analysis based on the sensitivity of a function.
We use gradient-based saliency scores to empirically demonstrate how different prompts affect the relevance of input tokens to the output.
We introduce sensitivity-aware decoding which incorporates sensitivity estimation as a penalty term in the standard greedy decoding.
arXiv Detail & Related papers (2023-11-13T10:52:01Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - Learning to Detect Slip through Tactile Estimation of the Contact Force Field and its Entropy [6.739132519488627]
We introduce a physics-informed, data-driven approach to detect slip continuously in real time.
We employ the GelSight Mini, an optical tactile sensor, attached to custom-designed grippers to gather tactile data.
Our results show that the best classification algorithm achieves a high average accuracy of 95.61%.
arXiv Detail & Related papers (2023-03-02T03:16:21Z) - A Comparative Study of Data Augmentation Techniques for Deep Learning
Based Emotion Recognition [11.928873764689458]
We conduct a comprehensive evaluation of popular deep learning approaches for emotion recognition.
We show that long-range dependencies in the speech signal are critical for emotion recognition.
Speed/rate augmentation offers the most robust performance gain across models.
arXiv Detail & Related papers (2022-11-09T17:27:03Z) - TASKED: Transformer-based Adversarial learning for human activity
recognition using wearable sensors via Self-KnowledgE Distillation [6.458496335718508]
We propose a novel Transformer-based Adversarial learning framework for human activity recognition using wearable sensors via Self-KnowledgE Distillation (TASKED)
In the proposed method, we adopt the teacher-free self-knowledge distillation to improve the stability of the training procedure and the performance of human activity recognition.
arXiv Detail & Related papers (2022-09-14T11:08:48Z) - Architectural Optimization and Feature Learning for High-Dimensional
Time Series Datasets [0.7388859384645262]
We study the problem of predicting the presence of transient noise artifacts in a gravitational wave detector.
We introduce models that reduce the error rate by over 60% compared to the previous state of the art.
arXiv Detail & Related papers (2022-02-27T23:41:23Z) - Towards Unbiased Visual Emotion Recognition via Causal Intervention [63.74095927462]
We propose a novel Emotion Recognition Network (IERN) to alleviate the negative effects brought by the dataset bias.
A series of designed tests validate the effectiveness of IERN, and experiments on three emotion benchmarks demonstrate that IERN outperforms other state-of-the-art approaches.
arXiv Detail & Related papers (2021-07-26T10:40:59Z) - Smart Anomaly Detection in Sensor Systems: A Multi-Perspective Review [0.0]
Anomaly detection is concerned with identifying data patterns that deviate remarkably from the expected behaviour.
This is an important research problem, due to its broad set of application domains, from data analysis to e-health, cybersecurity, predictive maintenance, fault prevention, and industrial automation.
We review state-of-the-art methods that may be employed to detect anomalies in the specific area of sensor systems.
arXiv Detail & Related papers (2020-10-27T09:56:16Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
We propose a framework, named Semantics-aware Adaptive Knowledge Distillation Networks (SAKDN), to enhance action recognition in vision-sensor modality (videos)
The SAKDN uses multiple wearable-sensors as teacher modalities and uses RGB videos as student modality.
arXiv Detail & Related papers (2020-09-01T03:38:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.