Smart Anomaly Detection in Sensor Systems: A Multi-Perspective Review
- URL: http://arxiv.org/abs/2010.14946v2
- Date: Sat, 31 Oct 2020 11:50:38 GMT
- Title: Smart Anomaly Detection in Sensor Systems: A Multi-Perspective Review
- Authors: L. Erhan, M. Ndubuaku, M. Di Mauro, W. Song, M. Chen, G. Fortino, O.
Bagdasar, A. Liotta
- Abstract summary: Anomaly detection is concerned with identifying data patterns that deviate remarkably from the expected behaviour.
This is an important research problem, due to its broad set of application domains, from data analysis to e-health, cybersecurity, predictive maintenance, fault prevention, and industrial automation.
We review state-of-the-art methods that may be employed to detect anomalies in the specific area of sensor systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection is concerned with identifying data patterns that deviate
remarkably from the expected behaviour. This is an important research problem,
due to its broad set of application domains, from data analysis to e-health,
cybersecurity, predictive maintenance, fault prevention, and industrial
automation. Herein, we review state-of-the-art methods that may be employed to
detect anomalies in the specific area of sensor systems, which poses hard
challenges in terms of information fusion, data volumes, data speed, and
network/energy efficiency, to mention but the most pressing ones. In this
context, anomaly detection is a particularly hard problem, given the need to
find computing-energy accuracy trade-offs in a constrained environment. We
taxonomize methods ranging from conventional techniques (statistical methods,
time-series analysis, signal processing, etc.) to data-driven techniques
(supervised learning, reinforcement learning, deep learning, etc.). We also
look at the impact that different architectural environments (Cloud, Fog, Edge)
can have on the sensors ecosystem. The review points to the most promising
intelligent-sensing methods, and pinpoints a set of interesting open issues and
challenges.
Related papers
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - A task of anomaly detection for a smart satellite Internet of things system [0.9427635404752934]
This paper proposes an unsupervised deep learning anomaly detection system.
Based on the generative adversarial network and self-attention mechanism, it automatically learns the complex linear and nonlinear dependencies between environmental sensor variables.
It can monitor the abnormal points of real sensor data with high real-time performance and can run on the intelligent satellite Internet of things system.
arXiv Detail & Related papers (2024-03-21T14:26:29Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
This study introduces a taxonomy for log anomalies and explores automated data labeling to mitigate labeling challenges.
The study envisions a future where root cause analysis follows anomaly detection, unraveling the underlying triggers of anomalies.
arXiv Detail & Related papers (2023-12-22T15:04:20Z) - AI-Based Energy Transportation Safety: Pipeline Radial Threat Estimation
Using Intelligent Sensing System [52.93806509364342]
This paper proposes a radial threat estimation method for energy pipelines based on distributed optical fiber sensing technology.
We introduce a continuous multi-view and multi-domain feature fusion methodology to extract comprehensive signal features.
We incorporate the concept of transfer learning through a pre-trained model, enhancing both recognition accuracy and training efficiency.
arXiv Detail & Related papers (2023-12-18T12:37:35Z) - Automatic Sensor-free Affect Detection: A Systematic Literature Review [0.0]
This paper provides a comprehensive literature review on sensor-free affect detection.
Despite the field's evident maturity, demonstrated by the consistent performance of the models, there is ample scope for future research.
There is also a need to refine model development practices and methods.
arXiv Detail & Related papers (2023-10-11T13:24:27Z) - Anomaly Detection in Industrial Machinery using IoT Devices and Machine
Learning: a Systematic Mapping [0.0]
Internet of Things (IoT) has enabled the collection of large volumes of data from industrial machinery.
However, the volume and complexity of data generated by the Internet of Things ecosystems make it difficult for humans to detect anomalies manually.
Machine learning (ML) algorithms can automate anomaly detection in industrial machinery by analyzing generated data.
arXiv Detail & Related papers (2023-07-28T20:58:00Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - Fast Wireless Sensor Anomaly Detection based on Data Stream in Edge
Computing Enabled Smart Greenhouse [5.716360276016705]
Edge computing enabled smart greenhouse is a representative application of Internet of Things technology.
Traditional anomaly detection algorithms have not properly considered the inherent characteristics of data stream produced by wireless sensor.
arXiv Detail & Related papers (2021-07-28T13:32:12Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.