論文の概要: Geometric Learning with Positively Decomposable Kernels
- arxiv url: http://arxiv.org/abs/2310.13821v1
- Date: Fri, 20 Oct 2023 21:18:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 05:07:57.247799
- Title: Geometric Learning with Positively Decomposable Kernels
- Title(参考訳): 正に分解可能な核を用いた幾何学的学習
- Authors: Nathael Da Costa, Cyrus Mostajeran, Juan-Pablo Ortega, Salem Said
- Abstract要約: 本稿では、正の分解を許容するカーネルのみを必要とするカーネルKrein空間(RKKS)を再現する手法を提案する。
RKKSで学習するためには、この分解にアクセスする必要はない。
- 参考スコア(独自算出の注目度): 7.155139483398897
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Kernel methods are powerful tools in machine learning. Classical kernel
methods are based on positive-definite kernels, which map data spaces into
reproducing kernel Hilbert spaces (RKHS). For non-Euclidean data spaces,
positive-definite kernels are difficult to come by. In this case, we propose
the use of reproducing kernel Krein space (RKKS) based methods, which require
only kernels that admit a positive decomposition. We show that one does not
need to access this decomposition in order to learn in RKKS. We then
investigate the conditions under which a kernel is positively decomposable. We
show that invariant kernels admit a positive decomposition on homogeneous
spaces under tractable regularity assumptions. This makes them much easier to
construct than positive-definite kernels, providing a route for learning with
kernels for non-Euclidean data. By the same token, this provides theoretical
foundations for RKKS-based methods in general.
- Abstract(参考訳): カーネルメソッドは機械学習の強力なツールである。
古典的なカーネル法は、データ空間を再現されたカーネルヒルベルト空間(RKHS)にマッピングする正定カーネルに基づいている。
ユークリッドでないデータ空間では、正定値のカーネルは成立し難い。
本稿では、正の分解を許容するカーネルのみを必要とするカーネルKrein空間(RKKS)を再現する手法を提案する。
rkksで学ぶためには,この分解にアクセスする必要はないことを示す。
次に、カーネルが正に分解可能な条件について検討する。
不変核は可搬正則性仮定の下で等質空間上の正の分解を許す。
これにより、正定値のカーネルよりも構築が容易になり、非ユークリッドデータのためのカーネルと学習するためのルートを提供する。
同じトークンにより、これは一般にRKKSベースの方法の理論的基礎を提供する。
関連論文リスト
- Spectral Truncation Kernels: Noncommutativity in $C^*$-algebraic Kernel Machines [12.11705128358537]
スペクトルトランケーションに基づく正定値カーネルの新しいクラスを提案する。
性能向上につながる要因であることを示す。
また,スペクトルトランケーションカーネルの表現能力を高めるための深層学習の視点も提案する。
論文 参考訳(メタデータ) (2024-05-28T04:47:12Z) - Learning "best" kernels from data in Gaussian process regression. With
application to aerodynamics [0.4588028371034406]
本稿では,ガウス過程の回帰/クリギングサロゲートモデリング手法におけるカーネルの選択/設計アルゴリズムを紹介する。
アルゴリズムの最初のクラスはカーネルフローであり、機械学習の分類の文脈で導入された。
アルゴリズムの第2のクラスはスペクトル核リッジ回帰と呼ばれ、近似される関数のノルムが最小となるような「最良の」カーネルを選択することを目的としている。
論文 参考訳(メタデータ) (2022-06-03T07:50:54Z) - Meta-Learning Hypothesis Spaces for Sequential Decision-making [79.73213540203389]
オフラインデータ(Meta-KeL)からカーネルをメタ学習することを提案する。
穏やかな条件下では、推定されたRKHSが有効な信頼セットを得られることを保証します。
また,ベイズ最適化におけるアプローチの有効性を実証的に評価した。
論文 参考訳(メタデータ) (2022-02-01T17:46:51Z) - Neural Fields as Learnable Kernels for 3D Reconstruction [101.54431372685018]
本稿では,学習したカーネルリッジの回帰に基づいて,暗黙の3次元形状を再構成する手法を提案する。
本手法は,3次元オブジェクトと大画面をスパース指向の点から再構成する際の最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2021-11-26T18:59:04Z) - Kernel Mean Estimation by Marginalized Corrupted Distributions [96.9272743070371]
カーネル平均をヒルベルト空間で推定することは、多くのカーネル学習アルゴリズムにおいて重要な要素である。
本稿では,カーネル平均推定器としてカーネル平均推定器を提案する。
論文 参考訳(メタデータ) (2021-07-10T15:11:28Z) - Reproducing Kernel Hilbert Space, Mercer's Theorem, Eigenfunctions,
Nystr\"om Method, and Use of Kernels in Machine Learning: Tutorial and Survey [5.967999555890417]
まず、機能分析と機械学習におけるカーネルの歴史のレビューから始めます。
本稿では,カーネル手法,半確定プログラミングによるカーネル学習,Hilbert-Schmidt独立性基準,最大平均誤差,カーネル平均埋め込み,カーネル次元削減など,機械学習におけるカーネルの利用方法を紹介する。
本論文は, 機械学習, 次元減少, 数学の関数解析, 量子力学の数学物理学など, 様々な科学分野に有用である。
論文 参考訳(メタデータ) (2021-06-15T21:29:12Z) - Flow-based Kernel Prior with Application to Blind Super-Resolution [143.21527713002354]
カーネル推定は一般にブラインド画像超解像(SR)の鍵となる問題の一つである
本稿では,カーネルモデリングのための正規化フローベースカーネルプリレント(fkp)を提案する。
合成および実世界の画像の実験により、提案したFKPがカーネル推定精度を大幅に向上することを示した。
論文 参考訳(メタデータ) (2021-03-29T22:37:06Z) - Isolation Distributional Kernel: A New Tool for Point & Group Anomaly
Detection [76.1522587605852]
分離分散カーネル(IDK)は2つの分布の類似性を測定する新しい方法である。
我々は、カーネルベースの異常検出のための新しいツールとして、IDKの有効性と効率を示す。
論文 参考訳(メタデータ) (2020-09-24T12:25:43Z) - Strong Uniform Consistency with Rates for Kernel Density Estimators with
General Kernels on Manifolds [11.927892660941643]
本稿では,ユーザによって設計されていない複雑なカーネルを用いて,カーネル密度推定の処理方法を示す。
本稿では,統計社会においてよく考慮されるVapnik-Chervonenkisクラスのカーネルとは異なる異方性カーネルについて述べる。
論文 参考訳(メタデータ) (2020-07-13T14:36:06Z) - Learning Deep Kernels for Non-Parametric Two-Sample Tests [50.92621794426821]
2組のサンプルが同じ分布から引き出されるかどうかを判定するカーネルベースの2サンプルテストのクラスを提案する。
私たちのテストは、テストパワーを最大化するためにトレーニングされたディープニューラルネットワークによってパラメータ化されたカーネルから構築されます。
論文 参考訳(メタデータ) (2020-02-21T03:54:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。