One is More: Diverse Perspectives within a Single Network for Efficient
DRL
- URL: http://arxiv.org/abs/2310.14009v2
- Date: Sun, 29 Oct 2023 02:46:30 GMT
- Title: One is More: Diverse Perspectives within a Single Network for Efficient
DRL
- Authors: Yiqin Tan, Ling Pan, Longbo Huang
- Abstract summary: We introduce OMNet, a novel learning paradigm utilizing multipleworks within a single network, offering diverse outputs efficiently.
OMNet can be easily applied to various deep reinforcement learning algorithms with minimal additional overhead.
- Score: 43.249133438809125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep reinforcement learning has achieved remarkable performance in various
domains by leveraging deep neural networks for approximating value functions
and policies. However, using neural networks to approximate value functions or
policy functions still faces challenges, including low sample efficiency and
overfitting. In this paper, we introduce OMNet, a novel learning paradigm
utilizing multiple subnetworks within a single network, offering diverse
outputs efficiently. We provide a systematic pipeline, including
initialization, training, and sampling with OMNet. OMNet can be easily applied
to various deep reinforcement learning algorithms with minimal additional
overhead. Through comprehensive evaluations conducted on MuJoCo benchmark, our
findings highlight OMNet's ability to strike an effective balance between
performance and computational cost.
Related papers
- Structured and Balanced Multi-component and Multi-layer Neural Networks [9.699640804685629]
We propose a balanced multi-component and multi-layer computation network (MMNN)
MMNNs achieve a significant reduction of training parameters compared to fully connected neural networks (FCNNs) or multi-layer perceptrons (MLPs)
arXiv Detail & Related papers (2024-06-30T17:00:42Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
We study optimization guarantees, i.e., achieving near-zero training loss with the increase in the number of learning epochs.
We show that the threshold on the number of training samples increases with the increase in the network width.
arXiv Detail & Related papers (2023-09-12T13:03:47Z) - Understanding Deep Neural Networks via Linear Separability of Hidden
Layers [68.23950220548417]
We first propose Minkowski difference based linear separability measures (MD-LSMs) to evaluate the linear separability degree of two points sets.
We demonstrate that there is a synchronicity between the linear separability degree of hidden layer outputs and the network training performance.
arXiv Detail & Related papers (2023-07-26T05:29:29Z) - Dynamic Neural Network for Multi-Task Learning Searching across Diverse
Network Topologies [14.574399133024594]
We present a new MTL framework that searches for optimized structures for multiple tasks with diverse graph topologies.
We design a restricted DAG-based central network with read-in/read-out layers to build topologically diverse task-adaptive structures.
arXiv Detail & Related papers (2023-03-13T05:01:50Z) - The Multiple Subnetwork Hypothesis: Enabling Multidomain Learning by
Isolating Task-Specific Subnetworks in Feedforward Neural Networks [0.0]
We identify a methodology and network representational structure which allows a pruned network to employ previously unused weights to learn subsequent tasks.
We show that networks trained using our approaches are able to learn multiple tasks, which may be related or unrelated, in parallel or in sequence without sacrificing performance on any task or exhibiting catastrophic forgetting.
arXiv Detail & Related papers (2022-07-18T15:07:13Z) - BCNet: Searching for Network Width with Bilaterally Coupled Network [56.14248440683152]
We introduce a new supernet called Bilaterally Coupled Network (BCNet) to address this issue.
In BCNet, each channel is fairly trained and responsible for the same amount of network widths, thus each network width can be evaluated more accurately.
Our method achieves state-of-the-art or competing performance over other baseline methods.
arXiv Detail & Related papers (2021-05-21T18:54:03Z) - Real-time Multi-Task Diffractive Deep Neural Networks via
Hardware-Software Co-design [1.6066483376871004]
This work proposes a novel hardware-software co-design method that enables robust and noise-resilient Multi-task Learning in D$2$NNs.
Our experimental results demonstrate significant improvements in versatility and hardware efficiency, and also demonstrate the robustness of proposed multi-task D$2$NN architecture.
arXiv Detail & Related papers (2020-12-16T12:29:54Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
We develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL)
We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner.
arXiv Detail & Related papers (2020-07-27T12:38:37Z) - Meta-Learning with Network Pruning [40.07436648243748]
We propose a network pruning based meta-learning approach for overfitting reduction via explicitly controlling the capacity of network.
We have implemented our approach on top of Reptile assembled with two network pruning routines: Dense-Sparse-Dense (DSD) and Iterative Hard Thresholding (IHT)
arXiv Detail & Related papers (2020-07-07T06:13:11Z) - MOPS-Net: A Matrix Optimization-driven Network forTask-Oriented 3D Point
Cloud Downsampling [86.42733428762513]
MOPS-Net is a novel interpretable deep learning-based method for matrix optimization.
We show that MOPS-Net can achieve favorable performance against state-of-the-art deep learning-based methods over various tasks.
arXiv Detail & Related papers (2020-05-01T14:01:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.