Explainable Semantic Medical Image Segmentation with Style
- URL: http://arxiv.org/abs/2303.05696v1
- Date: Fri, 10 Mar 2023 04:34:51 GMT
- Title: Explainable Semantic Medical Image Segmentation with Style
- Authors: Wei Dai, Siyu Liu, Craig B. Engstrom, Shekhar S. Chandra
- Abstract summary: We propose a fully supervised generative framework that can achieve generalisable segmentation with only limited labelled data.
The proposed approach creates medical image style paired with a segmentation task driven discriminator incorporating end-to-end adversarial training.
Experiments on a fully semantic, publicly available pelvis dataset demonstrated that our method is more generalisable to shifts than other state-of-the-art methods.
- Score: 7.074258860680265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic medical image segmentation using deep learning has recently achieved
high accuracy, making it appealing to clinical problems such as radiation
therapy. However, the lack of high-quality semantically labelled data remains a
challenge leading to model brittleness to small shifts to input data. Most
works require extra data for semi-supervised learning and lack the
interpretability of the boundaries of the training data distribution during
training, which is essential for model deployment in clinical practice. We
propose a fully supervised generative framework that can achieve generalisable
segmentation with only limited labelled data by simultaneously constructing an
explorable manifold during training. The proposed approach creates medical
image style paired with a segmentation task driven discriminator incorporating
end-to-end adversarial training. The discriminator is generalised to small
domain shifts as much as permissible by the training data, and the generator
automatically diversifies the training samples using a manifold of input
features learnt during segmentation. All the while, the discriminator guides
the manifold learning by supervising the semantic content and fine-grained
features separately during the image diversification. After training,
visualisation of the learnt manifold from the generator is available to
interpret the model limits. Experiments on a fully semantic, publicly available
pelvis dataset demonstrated that our method is more generalisable to shifts
than other state-of-the-art methods while being more explainable using an
explorable manifold.
Related papers
- A Classifier-Free Incremental Learning Framework for Scalable Medical Image Segmentation [6.591403935303867]
We introduce a novel segmentation paradigm enabling the segmentation of a variable number of classes within a single classifier-free network.
This network is trained using contrastive learning and produces discriminative feature representations that facilitate straightforward interpretation.
We demonstrate the flexibility of our method in handling varying class numbers within a unified network and its capacity for incremental learning.
arXiv Detail & Related papers (2024-05-25T19:05:07Z) - Guidelines for Cerebrovascular Segmentation: Managing Imperfect Annotations in the context of Semi-Supervised Learning [3.231698506153459]
Supervised learning methods achieve excellent performances when fed with a sufficient amount of labeled data.
Such labels are typically highly time-consuming, error-prone and expensive to produce.
Semi-supervised learning approaches leverage both labeled and unlabeled data, and are very useful when only a small fraction of the dataset is labeled.
arXiv Detail & Related papers (2024-04-02T09:31:06Z) - Learning Invariant Molecular Representation in Latent Discrete Space [52.13724532622099]
We propose a new framework for learning molecular representations that exhibit invariance and robustness against distribution shifts.
Our model achieves stronger generalization against state-of-the-art baselines in the presence of various distribution shifts.
arXiv Detail & Related papers (2023-10-22T04:06:44Z) - Analysing the effectiveness of a generative model for semi-supervised
medical image segmentation [23.898954721893855]
State-of-the-art in automated segmentation remains supervised learning, employing discriminative models such as U-Net.
Semi-supervised learning (SSL) attempts to leverage the abundance of unlabelled data to obtain more robust and reliable models.
Deep generative models such as the SemanticGAN are truly viable alternatives to tackle challenging medical image segmentation problems.
arXiv Detail & Related papers (2022-11-03T15:19:59Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
We introduce a simple but effective approach to improve the generalization capability of deep neural networks in the field of medical imaging classification.
Motivated by the observation that the domain variability of the medical images is to some extent compact, we propose to learn a representative feature space through variational encoding.
arXiv Detail & Related papers (2020-09-27T12:30:30Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Semi-supervised few-shot learning for medical image segmentation [21.349705243254423]
Recent attempts to alleviate the need for large annotated datasets have developed training strategies under the few-shot learning paradigm.
We propose a novel few-shot learning framework for semantic segmentation, where unlabeled images are also made available at each episode.
We show that including unlabeled surrogate tasks in the episodic training leads to more powerful feature representations.
arXiv Detail & Related papers (2020-03-18T20:37:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.