論文の概要: Distractor-aware Event-based Tracking
- arxiv url: http://arxiv.org/abs/2310.14194v1
- Date: Sun, 22 Oct 2023 05:50:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 01:11:24.546541
- Title: Distractor-aware Event-based Tracking
- Title(参考訳): ディトラクタ対応イベントベーストラッキング
- Authors: Yingkai Fu, Meng Li, Wenxi Liu, Yuanchen Wang, Jiqing Zhang, Baocai
Yin, Xiaopeng Wei, Xin Yang
- Abstract要約: 本稿では,シームズネットワークアーキテクチャ(DANet)にトランスフォーマーモジュールを導入するイベントベースのトラッカーを提案する。
本モデルは主にモーション認識ネットワークとターゲット認識ネットワークで構成され,イベントデータから動作キューとオブジェクトの輪郭の両方を同時に活用する。
私たちのDANetは、後処理なしでエンドツーエンドでトレーニングでき、単一のV100上で80FPS以上で実行できます。
- 参考スコア(独自算出の注目度): 45.07711356111249
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Event cameras, or dynamic vision sensors, have recently achieved success from
fundamental vision tasks to high-level vision researches. Due to its ability to
asynchronously capture light intensity changes, event camera has an inherent
advantage to capture moving objects in challenging scenarios including objects
under low light, high dynamic range, or fast moving objects. Thus event camera
are natural for visual object tracking. However, the current event-based
trackers derived from RGB trackers simply modify the input images to event
frames and still follow conventional tracking pipeline that mainly focus on
object texture for target distinction. As a result, the trackers may not be
robust dealing with challenging scenarios such as moving cameras and cluttered
foreground. In this paper, we propose a distractor-aware event-based tracker
that introduces transformer modules into Siamese network architecture (named
DANet). Specifically, our model is mainly composed of a motion-aware network
and a target-aware network, which simultaneously exploits both motion cues and
object contours from event data, so as to discover motion objects and identify
the target object by removing dynamic distractors. Our DANet can be trained in
an end-to-end manner without any post-processing and can run at over 80 FPS on
a single V100. We conduct comprehensive experiments on two large event tracking
datasets to validate the proposed model. We demonstrate that our tracker has
superior performance against the state-of-the-art trackers in terms of both
accuracy and efficiency.
- Abstract(参考訳): イベントカメラ(ダイナミックビジョンセンサー)は、近年、基本的な視覚タスクからハイレベル視覚研究まで成功している。
光強度の変化を非同期に捉えることができるため、イベントカメラは、低照度、高ダイナミックレンジ、高速移動中のオブジェクトなど、困難なシナリオで動くオブジェクトをキャプチャする固有の利点がある。
したがって、イベントカメラはビジュアルオブジェクト追跡に自然である。
しかし、RGBトラッカーから派生した現在のイベントベースのトラッカーは、単に入力イメージをイベントフレームに変更するだけで、ターゲットの区別のために主にオブジェクトテクスチャに焦点を当てた従来の追跡パイプラインに従っている。
結果として、トラッカーは、移動カメラや散らかった前景などの困難なシナリオに頑丈ではないかもしれない。
本稿では,シャムネットワークアーキテクチャ(danet)にトランスフォーマーモジュールを導入するイベントベースのトラッカを提案する。
具体的には,動き認識ネットワークとターゲット認識ネットワークを主とし,イベントデータから動きの手がかりと物体の輪郭を同時に活用し,動きの物体を発見し,動的に注意をそらして対象物体を識別する。
私たちのDANetは、後処理なしでエンドツーエンドでトレーニングでき、単一のV100上で80FPS以上で実行できます。
提案モデルを検証するため、2つの大きなイベント追跡データセットに関する包括的な実験を行った。
我々のトラッカーは精度と効率の両面において最先端トラッカーに対して優れた性能を示す。
関連論文リスト
- BlinkTrack: Feature Tracking over 100 FPS via Events and Images [50.98675227695814]
本稿では,RGB画像とイベントデータを統合した新しいフレームワークであるBlinkTrackを提案する。
本手法は,従来のカルマンフィルタを学習ベースのフレームワークに拡張し,イベントおよびイメージの分岐において微分可能なカルマンフィルタを利用する。
実験の結果、BlinkTrackは既存のイベントベースの手法よりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-09-26T15:54:18Z) - SpikeMOT: Event-based Multi-Object Tracking with Sparse Motion Features [52.213656737672935]
SpikeMOTはイベントベースのマルチオブジェクトトラッカーである。
SpikeMOTはスパイクニューラルネットワークを使用して、オブジェクトに関連するイベントストリームからスパーステンポラルな特徴を抽出する。
論文 参考訳(メタデータ) (2023-09-29T05:13:43Z) - MotionTrack: Learning Motion Predictor for Multiple Object Tracking [68.68339102749358]
本研究では,学習可能なモーション予測器を中心に,新しいモーショントラッカーであるMotionTrackを紹介する。
実験結果から、MotionTrackはDancetrackやSportsMOTといったデータセット上での最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-06-05T04:24:11Z) - Event-based Visual Tracking in Dynamic Environments [0.0]
イベントカメラとオフザシェルフ深層学習の両方を活用するためのフレームワークを提案する。
イベントデータを強度フレームに再構成することで、従来のカメラが許容できない状況下でのトラッキング性能が向上することを示す。
論文 参考訳(メタデータ) (2022-12-15T12:18:13Z) - Moving Object Detection for Event-based vision using Graph Spectral
Clustering [6.354824287948164]
移動物体検出は、幅広い応用のためのコンピュータビジョンにおける中心的な話題となっている。
イベントベースデータにおける移動物体検出のための教師なしグラフスペクトルクラスタリング手法を提案する。
さらに,移動物体の最適個数を自動決定する方法について述べる。
論文 参考訳(メタデータ) (2021-09-30T10:19:22Z) - VisEvent: Reliable Object Tracking via Collaboration of Frame and Event
Flows [93.54888104118822]
このタスクには現実的でスケールしたデータセットがないため、大規模なVisible-Eventベンチマーク(VisEventと呼ぶ)を提案する。
私たちのデータセットは、低照度、高速、背景乱雑なシナリオ下でキャプチャされた820のビデオペアで構成されています。
VisEventに基づいて、イベントフローをイベントイメージに変換し、30以上のベースラインメソッドを構築します。
論文 参考訳(メタデータ) (2021-08-11T03:55:12Z) - e-TLD: Event-based Framework for Dynamic Object Tracking [23.026432675020683]
本稿では,一般的な追跡条件下での移動イベントカメラを用いた長期オブジェクト追跡フレームワークを提案する。
このフレームワークは、オンライン学習を伴うオブジェクトの識別表現を使用し、ビューのフィールドに戻るとオブジェクトを検出し、追跡する。
論文 参考訳(メタデータ) (2020-09-02T07:08:56Z) - End-to-end Learning of Object Motion Estimation from Retinal Events for
Event-based Object Tracking [35.95703377642108]
イベントベースオブジェクト追跡のためのパラメトリックオブジェクトレベルの動き/変換モデルを学習し、回帰する新しいディープニューラルネットワークを提案する。
この目的を達成するために,線形時間減衰表現を用いた同期時間曲面を提案する。
我々は、TSLTDフレームのシーケンスを新しい網膜運動回帰ネットワーク(RMRNet)に供給し、エンド・ツー・エンドの5-DoFオブジェクト・モーション・レグレッションを実行する。
論文 参考訳(メタデータ) (2020-02-14T08:19:50Z) - Asynchronous Tracking-by-Detection on Adaptive Time Surfaces for
Event-based Object Tracking [87.0297771292994]
本稿では,イベントベースのトラッキング・バイ・ディテクト(ETD)手法を提案する。
この目的を達成するために,線形時間決定(ATSLTD)イベント・ツー・フレーム変換アルゴリズムを用いた適応時間曲面を提案する。
提案手法と,従来のカメラやイベントカメラをベースとした7種類のオブジェクト追跡手法と,ETDの2種類のバリエーションを比較した。
論文 参考訳(メタデータ) (2020-02-13T15:58:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。