Towards Harmful Erotic Content Detection through Coreference-Driven
Contextual Analysis
- URL: http://arxiv.org/abs/2310.14325v1
- Date: Sun, 22 Oct 2023 15:19:04 GMT
- Title: Towards Harmful Erotic Content Detection through Coreference-Driven
Contextual Analysis
- Authors: Inez Okulska and Emilia Wi\'snios
- Abstract summary: This paper introduces a hybrid neural and rule-based context-aware system to identify harmful contextual cues in erotic content.
Our model, tested on Polish text, demonstrates a promising accuracy of 84% and a recall of 80%.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adult content detection still poses a great challenge for automation.
Existing classifiers primarily focus on distinguishing between erotic and
non-erotic texts. However, they often need more nuance in assessing the
potential harm. Unfortunately, the content of this nature falls beyond the
reach of generative models due to its potentially harmful nature. Ethical
restrictions prohibit large language models (LLMs) from analyzing and
classifying harmful erotics, let alone generating them to create synthetic
datasets for other neural models. In such instances where data is scarce and
challenging, a thorough analysis of the structure of such texts rather than a
large model may offer a viable solution. Especially given that harmful erotic
narratives, despite appearing similar to harmless ones, usually reveal their
harmful nature first through contextual information hidden in the non-sexual
parts of the narrative.
This paper introduces a hybrid neural and rule-based context-aware system
that leverages coreference resolution to identify harmful contextual cues in
erotic content. Collaborating with professional moderators, we compiled a
dataset and developed a classifier capable of distinguishing harmful from
non-harmful erotic content. Our hybrid model, tested on Polish text,
demonstrates a promising accuracy of 84% and a recall of 80%. Models based on
RoBERTa and Longformer without explicit usage of coreference chains achieved
significantly weaker results, underscoring the importance of coreference
resolution in detecting such nuanced content as harmful erotics. This approach
also offers the potential for enhanced visual explainability, supporting
moderators in evaluating predictions and taking necessary actions to address
harmful content.
Related papers
- A linguistic analysis of undesirable outcomes in the era of generative AI [4.841442157674423]
We present a comprehensive simulation framework built upon the chat version of LLama2, focusing on the linguistic aspects of the generated content.
Our results show that the model produces less lexical rich content across generations, reducing diversity.
We find that autophagy transforms the initial model into a more creative, doubtful and confused one, which might provide inaccurate answers.
arXiv Detail & Related papers (2024-10-16T08:02:48Z) - Detecting sexually explicit content in the context of the child sexual abuse materials (CSAM): end-to-end classifiers and region-based networks [0.0]
Child sexual abuse materials (CSAM) pose a significant threat to the safety and well-being of children worldwide.
This study presents methods for classifying sexually explicit content, which plays a crucial role in the automated CSAM detection system.
arXiv Detail & Related papers (2024-06-20T09:21:08Z) - SafeGen: Mitigating Sexually Explicit Content Generation in Text-to-Image Models [28.23494821842336]
Text-to-image models may be tricked into generating not-safe-for-work (NSFW) content.
We present SafeGen, a framework to mitigate sexual content generation by text-to-image models.
arXiv Detail & Related papers (2024-04-10T00:26:08Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
The ability of text embedding models to generalize across a wide range of syntactic contexts remains under-explored.
Our findings reveal that existing text embedding models have not sufficiently addressed these syntactic understanding challenges.
We propose strategies to augment the generalization ability of text embedding models in diverse syntactic scenarios.
arXiv Detail & Related papers (2023-11-14T08:51:00Z) - CBBQ: A Chinese Bias Benchmark Dataset Curated with Human-AI
Collaboration for Large Language Models [52.25049362267279]
We present a Chinese Bias Benchmark dataset that consists of over 100K questions jointly constructed by human experts and generative language models.
The testing instances in the dataset are automatically derived from 3K+ high-quality templates manually authored with stringent quality control.
Extensive experiments demonstrate the effectiveness of the dataset in detecting model bias, with all 10 publicly available Chinese large language models exhibiting strong bias in certain categories.
arXiv Detail & Related papers (2023-06-28T14:14:44Z) - Mutual Information Alleviates Hallucinations in Abstractive
Summarization [73.48162198041884]
We find a simple criterion under which models are significantly more likely to assign more probability to hallucinated content during generation: high model uncertainty.
This finding offers a potential explanation for hallucinations: models default to favoring text with high marginal probability, when uncertain about a continuation.
We propose a decoding strategy that switches to optimizing for pointwise mutual information of the source and target token--rather than purely the probability of the target token--when the model exhibits uncertainty.
arXiv Detail & Related papers (2022-10-24T13:30:54Z) - Toxicity Detection with Generative Prompt-based Inference [3.9741109244650823]
It is a long-known risk that language models (LMs), once trained on corpus containing undesirable content, have the power to manifest biases and toxicity.
In this work, we explore the generative variant of zero-shot prompt-based toxicity detection with comprehensive trials on prompt engineering.
arXiv Detail & Related papers (2022-05-24T22:44:43Z) - Improving Faithfulness in Abstractive Summarization with Contrast
Candidate Generation and Selection [54.38512834521367]
We study contrast candidate generation and selection as a model-agnostic post-processing technique.
We learn a discriminative correction model by generating alternative candidate summaries.
This model is then used to select the best candidate as the final output summary.
arXiv Detail & Related papers (2021-04-19T05:39:24Z) - Detecting Cross-Modal Inconsistency to Defend Against Neural Fake News [57.9843300852526]
We introduce the more realistic and challenging task of defending against machine-generated news that also includes images and captions.
To identify the possible weaknesses that adversaries can exploit, we create a NeuralNews dataset composed of 4 different types of generated articles.
In addition to the valuable insights gleaned from our user study experiments, we provide a relatively effective approach based on detecting visual-semantic inconsistencies.
arXiv Detail & Related papers (2020-09-16T14:13:15Z) - Neural Data-to-Text Generation via Jointly Learning the Segmentation and
Correspondence [48.765579605145454]
We propose to explicitly segment target text into fragment units and align them with their data correspondences.
The resulting architecture maintains the same expressive power as neural attention models.
On both E2E and WebNLG benchmarks, we show the proposed model consistently outperforms its neural attention counterparts.
arXiv Detail & Related papers (2020-05-03T14:28:28Z) - On Faithfulness and Factuality in Abstractive Summarization [17.261247316769484]
We analyzed limitations of neural text generation models for abstractive document summarization.
We found that these models are highly prone to hallucinate content that is unfaithful to the input document.
We show that textual entailment measures better correlate with faithfulness than standard metrics.
arXiv Detail & Related papers (2020-05-02T00:09:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.