Enhancing Accuracy-Privacy Trade-off in Differentially Private Split Learning
- URL: http://arxiv.org/abs/2310.14434v3
- Date: Wed, 16 Oct 2024 00:36:31 GMT
- Title: Enhancing Accuracy-Privacy Trade-off in Differentially Private Split Learning
- Authors: Ngoc Duy Pham, Khoa Tran Phan, Naveen Chilamkurti,
- Abstract summary: Split learning (SL) aims to protect user data privacy by distributing deep models between client-server and keeping private data locally.
Recently proposed model inversion attacks can recover the original data from the smashed data.
A strategy is to adopt differential privacy (DP), which involves safeguarding the smashed data at the expense of some accuracy loss.
- Score: 2.2676798389997863
- License:
- Abstract: Split learning (SL) aims to protect user data privacy by distributing deep models between client-server and keeping private data locally. Only processed or `smashed' data can be transmitted from the clients to the server during the SL process. However, recently proposed model inversion attacks can recover the original data from the smashed data. In order to enhance privacy protection against such attacks, a strategy is to adopt differential privacy (DP), which involves safeguarding the smashed data at the expense of some accuracy loss. This paper presents the first investigation into the impact on accuracy when training multiple clients in SL with various privacy requirements. Subsequently, we propose an approach that reviews the DP noise distributions of other clients during client training to address the identified accuracy degradation. We also examine the application of DP to the local model of SL to gain insights into the trade-off between accuracy and privacy. Specifically, findings reveal that introducing noise in the later local layers offers the most favorable balance between accuracy and privacy. Drawing from our insights in the shallower layers, we propose an approach to reduce the size of smashed data to minimize data leakage while maintaining higher accuracy, optimizing the accuracy-privacy trade-off. Additionally, a smaller size of smashed data reduces communication overhead on the client side, mitigating one of the notable drawbacks of SL. Experiments with popular datasets demonstrate that our proposed approaches provide an optimal trade-off for incorporating DP into SL, ultimately enhancing training accuracy for multi-client SL with varying privacy requirements.
Related papers
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
We propose PseudoProbability Unlearning (PPU), a novel method that enables models to forget data to adhere to privacy-preserving manner.
Our method achieves over 20% improvements in forgetting error compared to the state-of-the-art.
arXiv Detail & Related papers (2024-11-04T21:27:06Z) - Privacy-Preserving Split Learning with Vision Transformers using Patch-Wise Random and Noisy CutMix [38.370923655357366]
In computer vision, the vision transformer (ViT) has increasingly superseded the convolutional neural network (CNN) for improved accuracy and robustness.
Split learning (SL) emerges as a viable solution, leveraging server-side resources to train ViTs while utilizing private data from distributed devices.
We propose a novel privacy-preserving SL framework that injects Gaussian noise into smashed data and mixes randomly chosen patches of smashed data across clients, coined DP-CutMixSL.
arXiv Detail & Related papers (2024-08-02T06:24:39Z) - Love or Hate? Share or Split? Privacy-Preserving Training Using Split
Learning and Homomorphic Encryption [47.86010265348072]
Split learning (SL) is a new collaborative learning technique that allows participants to train machine learning models without the client sharing raw data.
Previous works demonstrated that reconstructing activation maps could result in privacy leakage of client data.
In this paper, we improve upon previous works by constructing a protocol based on U-shaped SL that can operate on homomorphically encrypted data.
arXiv Detail & Related papers (2023-09-19T10:56:08Z) - A More Secure Split: Enhancing the Security of Privacy-Preserving Split Learning [2.853180143237022]
Split learning (SL) is a new collaborative learning technique that allows participants to train machine learning models without the client sharing raw data.
Previous works demonstrated that reconstructing Activation Maps (AMs) could result in privacy leakage of client data.
In this paper, we improve upon previous works by constructing a protocol based on U-shaped SL that can operate on homomorphically encrypted data.
arXiv Detail & Related papers (2023-09-15T18:39:30Z) - Split Without a Leak: Reducing Privacy Leakage in Split Learning [3.2066885499201176]
We propose a hybrid approach using Split Learning (SL) and Homomorphic Encryption (HE)
On the MIT-BIH dataset, our proposed hybrid approach using SL and HE yields faster training time (about 6 times) and significantly reduced communication overhead (almost 160 times) compared to other HE-based approaches.
arXiv Detail & Related papers (2023-08-30T06:28:42Z) - Split Ways: Privacy-Preserving Training of Encrypted Data Using Split
Learning [6.916134299626706]
Split Learning (SL) is a new collaborative learning technique that allows participants to train machine learning models without the client sharing raw data.
Previous works demonstrated that reconstructing activation maps could result in privacy leakage of client data.
In this paper, we improve upon previous works by constructing a protocol based on U-shaped SL that can operate on homomorphically encrypted data.
arXiv Detail & Related papers (2023-01-20T19:26:51Z) - Split Learning without Local Weight Sharing to Enhance Client-side Data Privacy [11.092451849022268]
Split learning (SL) aims to protect user data privacy by distributing deep models between client-server and keeping private data locally.
This paper first reveals data privacy leakage exacerbated from local weight sharing among the clients in SL through model inversion attacks.
We propose and analyze privacy-enhanced SL (P-SL) (or SL without local weight sharing) to reduce the data privacy leakage issue.
arXiv Detail & Related papers (2022-12-01T03:35:14Z) - Over-the-Air Federated Learning with Privacy Protection via Correlated
Additive Perturbations [57.20885629270732]
We consider privacy aspects of wireless federated learning with Over-the-Air (OtA) transmission of gradient updates from multiple users/agents to an edge server.
Traditional perturbation-based methods provide privacy protection while sacrificing the training accuracy.
In this work, we aim at minimizing privacy leakage to the adversary and the degradation of model accuracy at the edge server.
arXiv Detail & Related papers (2022-10-05T13:13:35Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
We characterize privacy guarantees for individual examples when releasing models trained by DP-SGD.
We find that most examples enjoy stronger privacy guarantees than the worst-case bound.
This implies groups that are underserved in terms of model utility simultaneously experience weaker privacy guarantees.
arXiv Detail & Related papers (2022-06-06T13:49:37Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users.
An adversary may still be able to infer the private training data by attacking the released model.
Differential privacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models.
arXiv Detail & Related papers (2020-05-01T04:28:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.