Mobile Traffic Prediction at the Edge through Distributed and Transfer
Learning
- URL: http://arxiv.org/abs/2310.14456v1
- Date: Sun, 22 Oct 2023 23:48:13 GMT
- Title: Mobile Traffic Prediction at the Edge through Distributed and Transfer
Learning
- Authors: Alfredo Petrella, Marco Miozzo, Paolo Dini
- Abstract summary: The research in this topic concentrated on making predictions in a centralized fashion, by collecting data from the different network elements.
We propose a novel prediction framework based on edge computing which uses datasets obtained on the edge through a large measurement campaign.
- Score: 2.687861184973893
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traffic prediction represents one of the crucial tasks for smartly optimizing
the mobile network. The research in this topic concentrated in making
predictions in a centralized fashion, i.e., by collecting data from the
different network elements. This translates to a considerable amount of energy
for data transmission and processing. In this work, we propose a novel
prediction framework based on edge computing which uses datasets obtained on
the edge through a large measurement campaign. Two main Deep Learning
architectures are designed, based on Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs), and tested under different training
conditions. In addition, Knowledge Transfer Learning (KTL) techniques are
employed to improve the performance of the models while reducing the required
computational resources. Simulation results show that the CNN architectures
outperform the RNNs. An estimation for the needed training energy is provided,
highlighting KTL ability to reduce the energy footprint of the models of 60%
and 90% for CNNs and RNNs, respectively. Finally, two cutting-edge explainable
Artificial Intelligence techniques are employed to interpret the derived
learning models.
Related papers
- Optimizing Convolutional Neural Network Architecture [0.0]
Convolutional Neural Networks (CNN) are widely used to face challenging tasks like speech recognition, natural language processing or computer vision.
We propose Optimizing Convolutional Neural Network Architecture (OCNNA), a novel CNN optimization and construction method based on pruning and knowledge distillation.
Our method has been compared with more than 20 convolutional neural network simplification algorithms obtaining outstanding results.
arXiv Detail & Related papers (2023-12-17T12:23:11Z) - Evolution of Convolutional Neural Network (CNN): Compute vs Memory
bandwidth for Edge AI [0.0]
This article explores the relationship between CNN compute requirements and memory bandwidth in the context of Edge AI.
We examine the impact of increasing model complexity on both computational requirements and memory access patterns.
This analysis provides insights into designing efficient architectures and potential hardware accelerators in enhancing CNN performance on edge devices.
arXiv Detail & Related papers (2023-09-24T09:11:22Z) - Transferability of Convolutional Neural Networks in Stationary Learning
Tasks [96.00428692404354]
We introduce a novel framework for efficient training of convolutional neural networks (CNNs) for large-scale spatial problems.
We show that a CNN trained on small windows of such signals achieves a nearly performance on much larger windows without retraining.
Our results show that the CNN is able to tackle problems with many hundreds of agents after being trained with fewer than ten.
arXiv Detail & Related papers (2023-07-21T13:51:45Z) - Solving Large-scale Spatial Problems with Convolutional Neural Networks [88.31876586547848]
We employ transfer learning to improve training efficiency for large-scale spatial problems.
We propose that a convolutional neural network (CNN) can be trained on small windows of signals, but evaluated on arbitrarily large signals with little to no performance degradation.
arXiv Detail & Related papers (2023-06-14T01:24:42Z) - Comparison Analysis of Traditional Machine Learning and Deep Learning
Techniques for Data and Image Classification [62.997667081978825]
The purpose of the study is to analyse and compare the most common machine learning and deep learning techniques used for computer vision 2D object classification tasks.
Firstly, we will present the theoretical background of the Bag of Visual words model and Deep Convolutional Neural Networks (DCNN)
Secondly, we will implement a Bag of Visual Words model, the VGG16 CNN Architecture.
arXiv Detail & Related papers (2022-04-11T11:34:43Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
We present a supervised pretraining approach to learn circuit representations that can be adapted to new unseen topologies or unseen prediction tasks.
To cope with the variable topological structure of different circuits we describe each circuit as a graph and use graph neural networks (GNNs) to learn node embeddings.
We show that pretraining GNNs on prediction of output node voltages can encourage learning representations that can be adapted to new unseen topologies or prediction of new circuit level properties.
arXiv Detail & Related papers (2022-03-29T21:18:47Z) - Adaptive Explainable Neural Networks (AxNNs) [8.949704905866888]
We develop a new framework called Adaptive Explainable Neural Networks (AxNN) for achieving the dual goals of good predictive performance and model interpretability.
For predictive performance, we build a structured neural network made up of ensembles of generalized additive model networks and additive index models.
For interpretability, we show how to decompose the results of AxNN into main effects and higher-order interaction effects.
arXiv Detail & Related papers (2020-04-05T23:40:57Z) - Curriculum By Smoothing [52.08553521577014]
Convolutional Neural Networks (CNNs) have shown impressive performance in computer vision tasks such as image classification, detection, and segmentation.
We propose an elegant curriculum based scheme that smoothes the feature embedding of a CNN using anti-aliasing or low-pass filters.
As the amount of information in the feature maps increases during training, the network is able to progressively learn better representations of the data.
arXiv Detail & Related papers (2020-03-03T07:27:44Z) - Exploring the Connection Between Binary and Spiking Neural Networks [1.329054857829016]
We bridge the recent algorithmic progress in training Binary Neural Networks and Spiking Neural Networks.
We show that training Spiking Neural Networks in the extreme quantization regime results in near full precision accuracies on large-scale datasets.
arXiv Detail & Related papers (2020-02-24T03:46:51Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.