論文の概要: Sentiment analysis with adaptive multi-head attention in Transformer
- arxiv url: http://arxiv.org/abs/2310.14505v4
- Date: Mon, 11 Mar 2024 04:13:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-13 15:38:25.565783
- Title: Sentiment analysis with adaptive multi-head attention in Transformer
- Title(参考訳): 適応型マルチヘッドアテンションを用いたトランスフォーマーの感情分析
- Authors: Fanfei Meng, Chen-Ao Wang
- Abstract要約: 本稿では,映画レビュー資料の感情を識別するためのアテンション機構に基づく新しいフレームワークを提案する。
本稿では,文の長さに基づいてアテンションヘッド数を変化させる適応型マルチヘッドアテンションアーキテクチャ(AdaptAttn)を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel framework based on the attention mechanism to identify the
sentiment of a movie review document. Previous efforts on deep neural networks
with attention mechanisms focus on encoder and decoder with fixed numbers of
multi-head attention. Therefore, we need a mechanism to stop the attention
process automatically if no more useful information can be read from the
memory.In this paper, we propose an adaptive multi-head attention architecture
(AdaptAttn) which varies the number of attention heads based on length of
sentences. AdaptAttn has a data preprocessing step where each document is
classified into any one of the three bins small, medium or large based on
length of the sentence. The document classified as small goes through two heads
in each layer, the medium group passes four heads and the large group is
processed by eight heads. We examine the merit of our model on the Stanford
large movie review dataset. The experimental results show that the F1 score
from our model is on par with the baseline model.
- Abstract(参考訳): 本稿では,映画レビュー資料の感情を識別するためのアテンション機構に基づく新しいフレームワークを提案する。
注意機構を有するディープニューラルネットワークの以前の取り組みは、固定数のマルチヘッド注意を持つエンコーダとデコーダに焦点を当てていた。
そこで本研究では,より有用な情報をメモリから読み取ることができなければ,注意処理を自動停止する機構が必要であり,文の長さに応じて注意ヘッド数を変化させる適応型多頭注意アーキテクチャ(adaptattn)を提案する。
AdaptAttnは、各文書を文の長さに基づいて、小、中、大の3つのビンのいずれかに分類するデータ前処理ステップを有する。
小さめに分類された文書は、各層で2つのヘッドを通り、中型グループは4つのヘッドを通り、大きなグループは8つのヘッドで処理される。
本モデルの有効性をスタンフォード大映画レビューデータセットで検証する。
実験結果から,本モデルからのF1スコアはベースラインモデルと同等であることがわかった。
関連論文リスト
- Hawk: An Industrial-strength Multi-label Document Classifier [0.0]
本稿では,これらの問題の重要性を詳述し,上記の問題に対処する独自のニューラルネットワークアーキテクチャを提案する。
ハイドラネットのようなアーキテクチャは、モジュール性を改善するための粒度の制御と、重み付けされた損失駆動タスク固有のヘッドを備えるように設計されている。
実験結果から,提案手法は既存の手法よりもかなり優れていることがわかった。
論文 参考訳(メタデータ) (2023-01-15T09:52:18Z) - Exploring and Exploiting Multi-Granularity Representations for Machine
Reading Comprehension [13.191437539419681]
適応的双方向注意カプセルネットワーク(ABA-Net)という新しい手法を提案する。
ABA-Netは、異なるレベルのソース表現を予測子に適応的に活用する。
私たちはSQuAD 1.0データセットに新しい最先端パフォーマンスを設定しました。
論文 参考訳(メタデータ) (2022-08-18T10:14:32Z) - Compositional Attention: Disentangling Search and Retrieval [66.7108739597771]
Multi-head, key-value attention は Transformer モデルとそのバリエーションのバックボーンである。
標準的なアテンションヘッドは、検索と検索の間の厳密なマッピングを学ぶ。
本稿では,標準ヘッド構造を置き換える新しいアテンション機構であるコンポジションアテンションアテンションを提案する。
論文 参考訳(メタデータ) (2021-10-18T15:47:38Z) - PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document
Summarization [16.830963601598242]
要約に着目した多文書表現のための事前学習モデルであるPRIMERを提案する。
具体的には,マルチドキュメント入力に適した適切な入力変換とグローバルアテンションを備えたLongformerアーキテクチャを採用する。
私たちのモデルであるPRIMERは、これらのほとんどの設定において、現在の最先端モデルよりも大きなマージンでパフォーマンスします。
論文 参考訳(メタデータ) (2021-10-16T07:22:24Z) - Paperswithtopic: Topic Identification from Paper Title Only [5.025654873456756]
人工知能(AI)分野からタイトルとサブフィールドで組み合わせた論文のデータセットを提示する。
また、論文タイトルのみから、論文のAIサブフィールドを予測する方法についても提示する。
変圧器モデルに対しては、モデルの分類過程をさらに説明するために、勾配に基づく注意可視化も提示する。
論文 参考訳(メタデータ) (2021-10-09T06:32:09Z) - Hierarchical Bi-Directional Self-Attention Networks for Paper Review
Rating Recommendation [81.55533657694016]
本稿では,階層型双方向自己注意ネットワークフレームワーク(HabNet)を提案する。
具体的には、文エンコーダ(レベル1)、レビュー内エンコーダ(レベル2)、レビュー間エンコーダ(レベル3)の3つのレベルで、論文レビューの階層構造を利用する。
我々は、最終的な受理決定を行う上で有用な予測者を特定することができ、また、数値的なレビュー評価とレビュアーが伝えるテキストの感情の不整合を発見するのに役立てることができる。
論文 参考訳(メタデータ) (2020-11-02T08:07:50Z) - Learning Hard Retrieval Decoder Attention for Transformers [69.40942736249397]
トランスフォーマー変換モデルは、容易に並列化できるマルチヘッドアテンション機構に基づいている。
ハード検索の注意機構は復号化の1.43倍高速であることを示す。
論文 参考訳(メタデータ) (2020-09-30T13:18:57Z) - Dense-Caption Matching and Frame-Selection Gating for Temporal
Localization in VideoQA [96.10612095576333]
本稿では,マルチモーダルな入力源を効果的に統合し,時間的関連情報から質問に答えるビデオ質問応答モデルを提案する。
また,2レベルアテンション(単語・オブジェクト・フレームレベル),異なるソース(ビデオ・高密度キャプション)に対するマルチヘッド自己統合,ゲートへのより関連性の高い情報伝達などで構成されている。
当社のモデルは,各モデルコンポーネントが大きな利益をもたらす,難易度の高いTVQAデータセット上で評価され,全体的なモデルでは,最先端のモデルよりも大きなマージンで優れています。
論文 参考訳(メタデータ) (2020-05-13T16:35:27Z) - Fixed Encoder Self-Attention Patterns in Transformer-Based Machine
Translation [73.11214377092121]
我々は,各エンコーダ層の注意頭数のみを,単純な固定型(非学習型)の注意パターンに置き換えることを提案する。
異なるデータサイズと複数の言語ペアを用いた実験により、トレーニング時にトランスフォーマーのエンコーダ側でアテンションヘッドを固定することは翻訳品質に影響を与えないことが示された。
論文 参考訳(メタデータ) (2020-02-24T13:53:06Z) - Low-Rank Bottleneck in Multi-head Attention Models [74.83235382203604]
現在のアーキテクチャにおけるヘッド数とヘッドサイズの間のスケーリングは、注目ヘッドの低ランクボトルネックを引き起こします。
本稿では,アテンションユニットの頭部サイズを入力シーケンス長に設定し,ヘッド数に依存しないようにすることを提案する。
論文 参考訳(メタデータ) (2020-02-17T16:16:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。