論文の概要: Harnessing ChatGPT for thematic analysis: Are we ready?
- arxiv url: http://arxiv.org/abs/2310.14545v1
- Date: Mon, 23 Oct 2023 03:55:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 22:39:21.612017
- Title: Harnessing ChatGPT for thematic analysis: Are we ready?
- Title(参考訳): ChatGPTをテーマ分析に役立てる - 準備はいいか?
- Authors: V Vien Lee, Stephanie C. C. van der Lubbe, Lay Hoon Goh and Jose M.
Valderas
- Abstract要約: ChatGPTは先進的な自然言語処理ツールであり、医学研究における様々な分野の応用が成長している。
この視点は、医学的文脈におけるテーマ分析の3つの中核段階におけるChatGPTの利用について考察する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: ChatGPT is an advanced natural language processing tool with growing
applications across various disciplines in medical research. Thematic analysis,
a qualitative research method to identify and interpret patterns in data, is
one application that stands to benefit from this technology. This viewpoint
explores the utilization of ChatGPT in three core phases of thematic analysis
within a medical context: 1) direct coding of transcripts, 2) generating themes
from a predefined list of codes, and 3) preprocessing quotes for manuscript
inclusion. Additionally, we explore the potential of ChatGPT to generate
interview transcripts, which may be used for training purposes. We assess the
strengths and limitations of using ChatGPT in these roles, highlighting areas
where human intervention remains necessary. Overall, we argue that ChatGPT can
function as a valuable tool during analysis, enhancing the efficiency of the
thematic analysis and offering additional insights into the qualitative data.
- Abstract(参考訳): ChatGPTは先進的な自然言語処理ツールであり、医学研究における様々な分野の応用が成長している。
データのパターンを識別し解釈するための定性的な研究手法であるthematic analysisは、この技術の恩恵を受けるアプリケーションのひとつだ。
この視点は、医学的文脈におけるテーマ分析の3つのコアフェーズにおけるchatgptの利用を考察する。
1) 転写物の直接符号化
2)予め定義されたコードリストからテーマを生成すること,及び
3)原稿包含のための前処理引用
さらに,ChatGPTによるインタビューテキスト生成の可能性についても検討した。
これらの役割におけるChatGPTの使用の強みと限界を評価し,人間の介入が必要な領域を強調した。
全体としては、ChatGPTは解析において貴重なツールとして機能し、理論解析の効率を高め、定性的データにさらなる洞察を与えることができると論じる。
関連論文リスト
- DEMASQ: Unmasking the ChatGPT Wordsmith [63.8746084667206]
そこで本研究では,ChatGPT生成内容を正確に識別する効果的なChatGPT検出器DEMASQを提案する。
提案手法は, 人為的, 機械的, 人為的, 人為的, 機械的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人
論文 参考訳(メタデータ) (2023-11-08T21:13:05Z) - Detecting ChatGPT: A Survey of the State of Detecting ChatGPT-Generated
Text [1.9643748953805937]
生成言語モデルは、人間が生成したように見える人工的なテキストを生成することによって、潜在的に騙される可能性がある。
この調査は、人間が生成したテキストとChatGPTを区別するために使われている現在のアプローチの概要を提供する。
論文 参考訳(メタデータ) (2023-09-14T13:05:20Z) - Is ChatGPT Involved in Texts? Measure the Polish Ratio to Detect
ChatGPT-Generated Text [48.36706154871577]
我々はHPPT(ChatGPT-polished academic abstracts)と呼ばれる新しいデータセットを紹介する。
純粋なChatGPT生成テキストの代わりに、人書きとChatGPTポリケートされた抽象文のペアを構成することで、既存のコーパスから分岐する。
また,ChatGPTによる修正の度合いを,オリジナルの人文テキストと比較した革新的な尺度であるPolish Ratio法を提案する。
論文 参考訳(メタデータ) (2023-07-21T06:38:37Z) - Ethical Aspects of ChatGPT in Software Engineering Research [4.0594888788503205]
ChatGPTは、自然言語の相互作用に基づいた効率的でアクセスしやすい情報分析と合成を提供することで、ソフトウェア工学(SE)の研究プラクティスを改善することができる。
しかしChatGPTは、盗用、プライバシー、データセキュリティ、バイアスや有害なデータを生成するリスクを含む倫理的課題をもたらす可能性がある。
本研究の目的は、モチベーター、デモティベーター、SEリサーチでChatGPTを使用する倫理的原則といった重要な要素を解明することで、与えられたギャップを埋めることである。
論文 参考訳(メタデータ) (2023-06-13T06:13:21Z) - On the Detectability of ChatGPT Content: Benchmarking, Methodology, and Evaluation through the Lens of Academic Writing [10.534162347659514]
そこで我々は,ChatGPT文中の微妙で深い意味的・言語的パターンをよりよく捉えるために,CheckGPTというディープニューラルネットワークフレームワークを開発した。
ChatGPTコンテンツの検出性を評価するため、我々はCheckGPTの転送性、迅速なエンジニアリング、ロバスト性について広範な実験を行った。
論文 参考訳(メタデータ) (2023-06-07T12:33:24Z) - Uncovering the Potential of ChatGPT for Discourse Analysis in Dialogue:
An Empirical Study [51.079100495163736]
本稿では、トピックセグメンテーションと談話解析という2つの談話分析タスクにおけるChatGPTの性能を体系的に検証する。
ChatGPTは、一般的なドメイン間会話においてトピック構造を特定する能力を示すが、特定のドメイン間会話ではかなり困難である。
我々のより深い調査は、ChatGPTは人間のアノテーションよりも合理的なトピック構造を提供するが、階層的なレトリック構造を線形に解析することしかできないことを示唆している。
論文 参考訳(メタデータ) (2023-05-15T07:14:41Z) - Differentiate ChatGPT-generated and Human-written Medical Texts [8.53416950968806]
この研究は、医学における責任と倫理的AIGC(Artificial Intelligence Generated Content)に関する最初の研究である。
本稿では,ChatGPTによる人的専門家による医療用テキストの差異の分析に焦点をあてる。
次のステップでは、これらの2種類の内容の言語的特徴を分析し、語彙、部分音声、依存性、感情、難易度などの違いを明らかにする。
論文 参考訳(メタデータ) (2023-04-23T07:38:07Z) - To ChatGPT, or not to ChatGPT: That is the question! [78.407861566006]
本研究は,ChatGPT検出における最新の手法を包括的かつ現代的に評価するものである。
我々は、ChatGPTと人間からのプロンプトからなるベンチマークデータセットをキュレートし、医療、オープンQ&A、ファイナンスドメインからの多様な質問を含む。
評価の結果,既存の手法ではChatGPT生成内容を効果的に検出できないことがわかった。
論文 参考訳(メタデータ) (2023-04-04T03:04:28Z) - Is ChatGPT a Good NLG Evaluator? A Preliminary Study [121.77986688862302]
NLG測定値として信頼性を示すため,ChatGPTのメタ評価を行った。
実験の結果,ChatGPTは従来の自動測定値と比較して,人間の判断と最先端あるいは競合的な相関を達成できた。
我々の予備研究は、汎用的な信頼性のあるNLGメトリックの出現を促すことを願っている。
論文 参考訳(メタデータ) (2023-03-07T16:57:20Z) - Is ChatGPT a General-Purpose Natural Language Processing Task Solver? [113.22611481694825]
大規模言語モデル(LLM)は、さまざまな自然言語処理(NLP)タスクをゼロショットで実行できることを実証している。
近年、ChatGPTのデビューは自然言語処理(NLP)コミュニティから大きな注目を集めている。
ChatGPTが多くのNLPタスクをゼロショットで実行できるジェネラリストモデルとして機能するかどうかはまだ分かっていない。
論文 参考訳(メタデータ) (2023-02-08T09:44:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。