論文の概要: Knowledge-Induced Medicine Prescribing Network for Medication Recommendation
- arxiv url: http://arxiv.org/abs/2310.14552v2
- Date: Wed, 12 Jun 2024 17:44:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 23:33:02.622126
- Title: Knowledge-Induced Medicine Prescribing Network for Medication Recommendation
- Title(参考訳): 医薬勧告のための知識誘導医療処方ネットワーク
- Authors: Ahmad Wisnu Mulyadi, Heung-Il Suk,
- Abstract要約: 本研究は,医学を推薦する知識誘導型医薬処方ネットワーク(KindMed)を提案する。
我々は、階層的シーケンス学習を利用して、患者の歴史的入院における臨床(診断と処置)と医療の流れの時間的ダイナミクスを発見し、融合させ、パーソナライズされたレコメンデーションを育む。
実世界のEHRコホートに対するKindMedの有効性を検証し,少数のグラフ駆動ベースラインに対する推奨性能の改善を実現した。
- 参考スコア(独自算出の注目度): 9.591674293850557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extensive adoption of electronic health records (EHRs) offers opportunities for their use in various downstream clinical analyses. To accomplish this purpose, enriching an EHR cohort with external knowledge (e.g., standardized medical ontology and wealthy semantics) could help us reveal more comprehensive insights via a spectrum of informative relations among medical codes. Nevertheless, harnessing those beneficial interconnections was scarcely exercised, especially in the medication recommendation task. This study proposes a novel Knowledge-Induced Medicine Prescribing Network (KindMed) to recommend medicines by inducing knowledge from myriad medical-related external sources upon the EHR cohort and rendering interconnected medical codes as medical knowledge graphs (KGs). On top of relation-aware graph representation learning to obtain an adequate embedding over such KGs, we leverage hierarchical sequence learning to discover and fuse temporal dynamics of clinical (i.e., diagnosis and procedures) and medicine streams across patients' historical admissions to foster personalized recommendations. Eventually, we employ attentive prescribing that accounts for three essential patient representations, i.e., a summary of joint historical medical records, clinical progression, and the current clinical state of patients. We validated the effectiveness of our KindMed on the augmented real-world EHR cohorts, achieving improved recommendation performances against a handful of graph-driven baselines.
- Abstract(参考訳): 電子健康記録(EHR)の広範囲な採用は、様々な下流臨床分析に利用するための機会を提供する。
この目的を達成するために、EHRコホートを外部知識(例えば、標準化された医学オントロジーとリッチセマンティクス)で豊かにすることで、医療コード間の情報的関係のスペクトルを通してより包括的な洞察を明らかにするのに役立つ。
それにもかかわらず、これらの有用な相互接続を活用することは、特に医薬品推奨タスクにおいて、ほとんど実行されなかった。
本研究では,EHRコホートに基づく無数の医療関連外部情報源から知識を誘導し,医療知識グラフ(KG)として相互接続された医療コードをレンダリングすることにより,医薬を推奨する新しい知識誘導医療処方ネットワーク(KindMed)を提案する。
このようなKGに対する適切な埋め込みを得るために,関係認識グラフ表現学習に加えて,階層的シーケンス学習を活用して,患者の歴史的入院を横断する臨床(診断と治療)と医療の流れの時間的ダイナミクスを発見し,融合させ,パーソナライズされたレコメンデーションを奨励する。
最終的には,3つの重要な患者表現,すなわち,共同医療記録の要約,臨床経過,および現在の臨床状態について記述する注意深い処方を用いている。
実世界のEHRコホートに対するKindMedの有効性を検証し,少数のグラフ駆動ベースラインに対する推奨性能の改善を実現した。
関連論文リスト
- MedKP: Medical Dialogue with Knowledge Enhancement and Clinical Pathway
Encoding [48.348511646407026]
本稿では,知識向上と臨床パスウェイ符号化フレームワークを用いた医療対話について紹介する。
このフレームワークは、医療知識グラフを介して外部知識増強モジュールと、医療機関および医師の行動を介して、内部臨床経路をコードする。
論文 参考訳(メタデータ) (2024-03-11T10:57:45Z) - Next Visit Diagnosis Prediction via Medical Code-Centric Multimodal Contrastive EHR Modelling with Hierarchical Regularisation [0.0]
NECHOは,階層的正規化を伴う新しい医用コード中心のマルチモーダル・コントラスト学習フレームワークである。
まず, 医用コード, 人口統計, 臨床ノートを含む多面的情報をネットワーク設計を用いて統合する。
また,EHRデータの階層構造を学習するために,医療オントロジーにおける親レベル情報を用いてモダリティ固有のエンコーダを正規化する。
論文 参考訳(メタデータ) (2024-01-22T01:58:32Z) - Zero-Shot Medical Information Retrieval via Knowledge Graph Embedding [27.14794371879541]
本稿では、ゼロショット医療情報検索(MIR)の新しいアプローチであるMedFusionRankを紹介する。
提案手法は、学習済みのBERTスタイルのモデルを用いて、コンパクトだが情報的なキーワードを抽出する。
これらのキーワードは、医療知識グラフ内の概念エンティティにリンクすることで、ドメイン知識に富む。
論文 参考訳(メタデータ) (2023-10-31T16:26:33Z) - DKINet: Medication Recommendation via Domain Knowledge Informed Deep Learning [12.609882335746859]
医療勧告は、医療の根本的かつ重要な分野である。
これまでの研究は主に電子健康記録から患者の表現を学ぶことに焦点を当ててきた。
本稿では,複雑な臨床症状とドメイン知識の効果的な統合に対処する知識注入モジュールを提案する。
論文 参考訳(メタデータ) (2023-05-31T07:22:15Z) - Retrieval-Augmented and Knowledge-Grounded Language Models for Faithful Clinical Medicine [68.7814360102644]
本稿では,Re$3$Writer法を提案する。
本手法が患者の退院指示生成に有効であることを示す。
論文 参考訳(メタデータ) (2022-10-23T16:34:39Z) - KnowAugNet: Multi-Source Medical Knowledge Augmented Medication
Prediction Network with Multi-Level Graph Contrastive Learning [8.71936906687061]
本稿では,マルチソース医療知識統合医薬品予測ネットワークである textbfKnowAugNet を提案する。
マルチレベルグラフコントラスト学習フレームワークを通じて、医療コード間の多様な関係をキャプチャする。
電子カルテに従って、医師が患者に通知された薬の判断を下すのを助けることができる。
論文 参考訳(メタデータ) (2022-04-25T15:47:41Z) - Enriching Unsupervised User Embedding via Medical Concepts [51.17532619610099]
教師なしのユーザ埋め込みは、患者を人間の監督なしに、固定長のベクターにエンコードすることを目的としている。
臨床ノートから抽出された医療概念は、患者とその臨床カテゴリ間の豊富な関係を含んでいる。
本稿では,2つの臨床コーパスからテキスト文書と医療概念を共同で活用する,非教師なしユーザ埋め込みを提案する。
論文 参考訳(メタデータ) (2022-03-20T18:54:05Z) - Conditional Generation Net for Medication Recommendation [73.09366442098339]
医薬推奨は、患者の診断に従って適切な薬セットを提供することを目標としており、これは診療所において重要な課題である。
医薬品群を生成するための新しいコピー・アンド・予測機構を導入した条件生成ネット(COGNet)を提案する。
提案手法を公開MIMICデータセット上で検証し,実験結果から,提案手法が最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-02-14T10:16:41Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
本稿では,電子健康記録の医用テキストを予測に用いる新しい手法を提案する。
外部知識グラフによって強化された多視点グラフを有する患者の退院サマリーを表現している。
実験により,本手法の有効性が証明され,最先端の性能が得られた。
論文 参考訳(メタデータ) (2021-12-19T01:45:57Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z) - PREMIER: Personalized REcommendation for Medical prescrIptions from
Electronic Records [8.365167718547296]
われわれは、PreMIERと呼ばれる2段階の注意に基づくパーソナライズド医薬品レコメンデーションシステムを設計する。
本システムでは,患者に対する副作用を最小限に抑えるため,薬物間の相互作用を考慮に入れている。
MIMIC-IIIと独自の外来データセットの実験結果から、PreMIERは最先端の医薬品推奨システムより優れていることが示された。
論文 参考訳(メタデータ) (2020-08-28T04:48:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。