論文の概要: Retrieval-Augmented and Knowledge-Grounded Language Models for Faithful Clinical Medicine
- arxiv url: http://arxiv.org/abs/2210.12777v4
- Date: Sun, 21 Jul 2024 22:57:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 06:15:59.712075
- Title: Retrieval-Augmented and Knowledge-Grounded Language Models for Faithful Clinical Medicine
- Title(参考訳): 検索型および知識型言語モデルによる臨床診断
- Authors: Fenglin Liu, Bang Yang, Chenyu You, Xian Wu, Shen Ge, Zhangdaihong Liu, Xu Sun, Yang Yang, David A. Clifton,
- Abstract要約: 本稿では,Re$3$Writer法を提案する。
本手法が患者の退院指示生成に有効であることを示す。
- 参考スコア(独自算出の注目度): 68.7814360102644
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Language models (LMs), including large language models (such as ChatGPT), have the potential to assist clinicians in generating various clinical notes. However, LMs are prone to produce ``hallucinations'', i.e., generated content that is not aligned with facts and knowledge. In this paper, we propose the Re$^3$Writer method with retrieval-augmented generation and knowledge-grounded reasoning to enable LMs to generate faithful clinical texts. We demonstrate the effectiveness of our method in generating patient discharge instructions. It requires the LMs not to only understand the patients' long clinical documents, i.e., the health records during hospitalization, but also to generate critical instructional information provided both to carers and to the patient at the time of discharge. The proposed Re$^3$Writer imitates the working patterns of physicians to first \textbf{re}trieve related working experience from historical instructions written by physicians, then \textbf{re}ason related medical knowledge. Finally, it \textbf{re}fines the retrieved working experience and reasoned medical knowledge to extract useful information, which is used to generate the discharge instructions for previously-unseen patients. Our experiments show that, using our method, the performance of five representative LMs can be substantially boosted across all metrics. Meanwhile, we show results from human evaluations to measure the effectiveness in terms of fluency, faithfulness, and comprehensiveness.
- Abstract(参考訳): 大規模言語モデル(ChatGPTなど)を含む言語モデル(LM)は、臨床医が様々な臨床ノートを作成するのを助ける可能性がある。
しかし、LMは「ハロシン化」、すなわち事実や知識と一致しない生成コンテンツを生成する傾向にある。
本稿では,LMが忠実な臨床テキストを生成できるように,検索拡張生成と知識基底推論を備えたRe$^3$Writer法を提案する。
本手法が患者の退院指示生成に有効であることを示す。
LMは、患者の長期臨床文書、すなわち入院中の健康記録を理解するだけでなく、退院時に介護者と患者の両方に提供される重要な教育情報を生成する必要がある。
提案したRe$3$Writerは、医師の作業パターンを模倣して、医師が記述した履歴的記述から、まず「textbf{re}trieve」に関連する作業経験を抽出し、それから「textbf{re}ason」に関連する医療知識を抽出する。
最後に、検索した作業経験と推論された医療知識を識別し、有用情報を抽出し、前例のない患者の退院指示を生成する。
実験により,本手法を用いることで,すべての指標において,5つの代表的なLMの性能を大幅に向上できることが確認された。
一方,人間による評価の結果は,流布度,忠実度,包括性の観点から評価する。
関連論文リスト
- Improving Clinical Note Generation from Complex Doctor-Patient Conversation [20.2157016701399]
大言語モデル(LLM)を用いた臨床ノート作成分野への3つの重要な貢献について述べる。
まず、CliniKnoteを紹介します。CliniKnoteは、1200の複雑な医師と患者との会話と、その全臨床ノートを組み合わせたデータセットです。
第2に,従来のSOAPcitepodder20soap(Subjective, Objective, Assessment, Plan)のメモを上位にキーワードセクションを追加することで,必須情報の迅速な識別を可能にするK-SOAPを提案する。
第3に、医師と患者との会話からK-SOAPノートを生成する自動パイプラインを開発し、様々な近代LCMをベンチマークする。
論文 参考訳(メタデータ) (2024-08-26T18:39:31Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
VLM(Vision-Language Models)は、医用画像を分析し、自然言語の相互作用に関与することによって、臨床医を支援する。
VLMはしばしば「幻覚的」な振る舞いを示し、文脈的マルチモーダル情報に基づかないテキスト出力を生成する。
本稿では,臨床推論の象徴的表現を用いて医療知識にVLMを基盤とする新たなアライメントアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-29T23:19:28Z) - LLMs Accelerate Annotation for Medical Information Extraction [7.743388571513413]
本稿では,LLM(Large Language Models)と人間の専門知識を組み合わせた手法を提案する。
医療情報抽出タスクにおいて,我々の手法を厳格に評価し,我々のアプローチが人的介入を大幅に削減するだけでなく,高い精度を維持していることを示す。
論文 参考訳(メタデータ) (2023-12-04T19:26:13Z) - Adapted Large Language Models Can Outperform Medical Experts in Clinical Text Summarization [8.456700096020601]
大規模言語モデル (LLM) は自然言語処理 (NLP) において有望であるが, 様々な臨床要約タスクにおける有効性は証明されていない。
本研究では,4つの臨床要約課題にまたがる8つのLCMに適応法を適用した。
10名の医師による臨床読影者を対象に, 要約, 完全性, 正当性, 簡潔性を評価した。ほとんどの場合, ベスト適応LSMの要約は, 医用専門家の要約と比べ, 同等(45%), 上等(36%)である。
論文 参考訳(メタデータ) (2023-09-14T05:15:01Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
本稿では,ソフトプロンプトを用いたモデルに依存しないパイプラインを導入し,確率に基づく要約の利点を保ちながら分散を減少させる。
実験結果から,本手法は性能を向上するだけでなく,様々な言語モデルの分散を効果的に抑制することが明らかとなった。
論文 参考訳(メタデータ) (2023-03-23T04:47:46Z) - Towards more patient friendly clinical notes through language models and
ontologies [57.51898902864543]
本稿では,単語の単純化と言語モデリングに基づく医療用テキストの自動作成手法を提案する。
我々は,公開医療文のデータセットペアと,臨床医による簡易化版を用いている。
本手法は,医学フォーラムデータに基づく言語モデルを用いて,文法と本来の意味の両方を保存しながら,より単純な文を生成する。
論文 参考訳(メタデータ) (2021-12-23T16:11:19Z) - Benchmarking Automated Clinical Language Simplification: Dataset,
Algorithm, and Evaluation [48.87254340298189]
我々はMedLaneという名の新しいデータセットを構築し、自動化された臨床言語簡易化手法の開発と評価を支援する。
我々は,人間のアノテーションの手順に従い,最先端のパフォーマンスを実現するDECLAREと呼ばれる新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-12-04T06:09:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。