論文の概要: Modeling groundwater levels in California's Central Valley by hierarchical Gaussian process and neural network regression
- arxiv url: http://arxiv.org/abs/2310.14555v3
- Date: Sat, 12 Oct 2024 01:55:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-15 21:41:09.021288
- Title: Modeling groundwater levels in California's Central Valley by hierarchical Gaussian process and neural network regression
- Title(参考訳): 階層型ガウス過程とニューラルネットワーク回帰によるカリフォルニア・セントラルバレーの地下水位モデリング
- Authors: Anshuman Pradhan, Kyra H. Adams, Venkat Chandrasekaran, Zhen Liu, John T. Reager, Andrew M. Stuart, Michael J. Turmon,
- Abstract要約: 中央バレー帯水層の3次元岩相テクスチャモデルから学習し,地下水位をモデル化するための新しい機械学習手法を考案した。
本研究では,不規則な井戸データを持つ流域における帯水層応答に対する水文学的理解を補うためにモデル予測がどのように用いられるかを示す。
以上の結果から,2017年と2019年のカリフォルニアの湿潤年は,前回の干ばつによる地下水損失の補充にはほとんど効果がなかったことが示唆された。
- 参考スコア(独自算出の注目度): 9.816891579613628
- License:
- Abstract: Modeling groundwater levels continuously across California's Central Valley (CV) hydrological system is challenging due to low-quality well data which is sparsely and noisily sampled across time and space. The lack of consistent well data makes it difficult to evaluate the impact of 2017 and 2019 wet years on CV groundwater following a severe drought during 2012-2015. A novel machine learning method is formulated for modeling groundwater levels by learning from a 3D lithological texture model of the CV aquifer. The proposed formulation performs multivariate regression by combining Gaussian processes (GP) and deep neural networks (DNN). The hierarchical modeling approach constitutes training the DNN to learn a lithologically informed latent space where non-parametric regression with GP is performed. We demonstrate the efficacy of GP-DNN regression for modeling non-stationary features in the well data with fast and reliable uncertainty quantification, as validated to be statistically consistent with the empirical data distribution from 90 blind wells across CV. We show how the model predictions may be used to supplement hydrological understanding of aquifer responses in basins with irregular well data. Our results indicate that on average the 2017 and 2019 wet years in California were largely ineffective in replenishing the groundwater loss caused during previous drought years.
- Abstract(参考訳): カリフォルニア州のセントラル・バレー(CV)で連続的に地下水位をモデル化することは、低品質の井戸データが時間と空間にわたって希少にサンプリングされ、困難である。
一貫性のある井戸データがないため、2012-2015年の激しい干ばつの後、2017年と2019年の湿潤年がCV地下水に与える影響を評価するのは難しい。
CV帯水層における3次元岩相テクスチャモデルから学習することにより,地下水位をモデル化するための新しい機械学習手法を定式化した。
提案法は,ガウス過程(GP)とディープニューラルネットワーク(DNN)を組み合わせて多変量回帰を行う。
階層的モデリング手法はDNNを訓練し、GPによる非パラメトリック回帰が実行されるリソロジー的に情報を得た潜在空間を学習する。
高速かつ確実な不確実性定量化を伴う井戸データの非定常特性をモデル化するためのGP-DNN回帰の有効性を示す。
本研究では,不規則な井戸データを持つ流域における帯水層応答に対する水文学的理解を補うためにモデル予測がどのように用いられるかを示す。
以上の結果から,2017年と2019年のカリフォルニアの湿潤年は,前回の干ばつによる地下水損失の補充にはほとんど効果がなかったことが示唆された。
関連論文リスト
- GeoFUSE: A High-Efficiency Surrogate Model for Seawater Intrusion Prediction and Uncertainty Reduction [0.10923877073891446]
海岸帯水層への海水侵入は地下水資源に重大な脅威をもたらす。
ディープラーニングに基づく新しいサロゲートフレームワークGeoFUSEを開発した。
ワシントン州のビーバークリーク潮流-河床平原系の2次元断面にGeoFUSEを適用した。
論文 参考訳(メタデータ) (2024-10-26T08:10:32Z) - WaterQualityNeT: Prediction of Seasonal Water Quality of Nepal Using Hybrid Deep Learning Models [0.0]
本稿では,ネパールの季節的な水質を予測するためのハイブリッド深層学習モデルを提案する。
このモデルは、畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)を統合し、データの時間的および空間的パターンを活用する。
論文 参考訳(メタデータ) (2024-09-17T05:26:59Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
洪水浸水予測は洪水前後の緊急計画に重要な情報を提供する。
近年,高分解能な流体力学モデリングが普及しつつあるが,道路の洪水範囲やリアルタイムのビルディングレベルは依然として計算的に要求されている。
洪水範囲と浸水深度予測のためのハイブリッドプロセスベースおよびデータ駆動機械学習(ML)アプローチを提案する。
論文 参考訳(メタデータ) (2023-07-29T22:49:50Z) - Kalman Filter for Online Classification of Non-Stationary Data [101.26838049872651]
オンライン連続学習(OCL)では、学習システムはデータのストリームを受け取り、予測とトレーニングの手順を順次実行する。
本稿では,線形予測量に対するニューラル表現と状態空間モデルを用いた確率ベイズオンライン学習モデルを提案する。
多クラス分類の実験では、モデルの予測能力と非定常性を捉える柔軟性を示す。
論文 参考訳(メタデータ) (2023-06-14T11:41:42Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - Differentiable, learnable, regionalized process-based models with
physical outputs can approach state-of-the-art hydrologic prediction accuracy [1.181206257787103]
地域化パラメータ化を伴う集中観測変数(ストリームフロー)に対するLSTMの性能レベルに、微分可能で学習可能なプロセスベースモデル(デルタモデルと呼ばれる)がアプローチ可能であることを示す。
我々は、単純な水理モデルHBVをバックボーンとして使用し、組み込みニューラルネットワークを使用します。
論文 参考訳(メタデータ) (2022-03-28T15:06:53Z) - High-resolution rainfall-runoff modeling using graph neural network [0.0]
本研究では,高分解能降水データから空間情報をフル活用する新しい深層学習モデルを提案する。
GNRRMは過度に適合せず、モデル性能を大幅に改善した。
論文 参考訳(メタデータ) (2021-10-21T00:12:02Z) - Artificial Intelligence Hybrid Deep Learning Model for Groundwater Level
Prediction Using MLP-ADAM [0.0]
本稿では,多層パーセプトロンを用いて地下水位をシミュレーションする。
この問題には適応モーメント推定アルゴリズムも用いられる。
その結果,ディープラーニングアルゴリズムは高精度な予測が可能であることが示唆された。
論文 参考訳(メタデータ) (2021-07-29T10:11:45Z) - Churn Reduction via Distillation [54.5952282395487]
本研究は, 基礎モデルを教師として用いた蒸留によるトレーニングと, 予測的チャーンに対する明示的な制約によるトレーニングとの等価性を示す。
次に, 蒸留が近年の多くのベースラインに対する低チャーン訓練に有効であることを示す。
論文 参考訳(メタデータ) (2021-06-04T18:03:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。