Tensor Decomposition Based Attention Module for Spiking Neural Networks
- URL: http://arxiv.org/abs/2310.14576v2
- Date: Thu, 11 Apr 2024 02:57:21 GMT
- Title: Tensor Decomposition Based Attention Module for Spiking Neural Networks
- Authors: Haoyu Deng, Ruijie Zhu, Xuerui Qiu, Yule Duan, Malu Zhang, Liangjian Deng,
- Abstract summary: We design the textitprojected full attention (PFA) module, which demonstrates excellent results with linearly growing parameters.
Our method achieves state-of-the-art performance on both static and dynamic benchmark datasets.
- Score: 18.924242014716647
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The attention mechanism has been proven to be an effective way to improve spiking neural network (SNN). However, based on the fact that the current SNN input data flow is split into tensors to process on GPUs, none of the previous works consider the properties of tensors to implement an attention module. This inspires us to rethink current SNN from the perspective of tensor-relevant theories. Using tensor decomposition, we design the \textit{projected full attention} (PFA) module, which demonstrates excellent results with linearly growing parameters. Specifically, PFA is composed by the \textit{linear projection of spike tensor} (LPST) module and \textit{attention map composing} (AMC) module. In LPST, we start by compressing the original spike tensor into three projected tensors using a single property-preserving strategy with learnable parameters for each dimension. Then, in AMC, we exploit the inverse procedure of the tensor decomposition process to combine the three tensors into the attention map using a so-called connecting factor. To validate the effectiveness of the proposed PFA module, we integrate it into the widely used VGG and ResNet architectures for classification tasks. Our method achieves state-of-the-art performance on both static and dynamic benchmark datasets, surpassing the existing SNN models with Transformer-based and CNN-based backbones.
Related papers
- Tensor Completion via Leverage Sampling and Tensor QR Decomposition for
Network Latency Estimation [2.982069479212266]
A large scale of network latency estimation requires a lot of computing time.
We propose a new method that is much faster and maintains high accuracy.
Numerical experiments witness that our method is faster than state-of-art algorithms with satisfactory accuracy.
arXiv Detail & Related papers (2023-06-27T07:21:26Z) - Low-Rank Tensor Function Representation for Multi-Dimensional Data
Recovery [52.21846313876592]
Low-rank tensor function representation (LRTFR) can continuously represent data beyond meshgrid with infinite resolution.
We develop two fundamental concepts for tensor functions, i.e., the tensor function rank and low-rank tensor function factorization.
Our method substantiates the superiority and versatility of our method as compared with state-of-the-art methods.
arXiv Detail & Related papers (2022-12-01T04:00:38Z) - Latent Matrices for Tensor Network Decomposition and to Tensor
Completion [8.301418317685906]
We propose a novel higher-order tensor decomposition model that decomposes the tensor into smaller ones and speeds up the computation of the algorithm.
Three optimization algorithms, LMTN-PAM, LMTN-SVD and LMTN-AR, have been developed and applied to the tensor-completion task.
Experimental results show that our LMTN-SVD algorithm is 3-6 times faster than the FCTN-PAM algorithm and only a 1.8 points accuracy drop.
arXiv Detail & Related papers (2022-10-07T08:19:50Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
We introduce four complicated missing patterns, including missing and three fiber-like missing cases according to the mode-drivenn fibers.
Despite nonity of the objective function in our model, we derive the optimal solutions by integrating alternating data-mputation method of multipliers.
arXiv Detail & Related papers (2022-05-19T08:37:56Z) - 2D+3D facial expression recognition via embedded tensor manifold
regularization [16.98176664818354]
A novel approach via embedded tensor manifold regularization for 2D+3D facial expression recognition (FERETMR) is proposed.
We establish the first-order optimality condition in terms of stationary points, and then design a block coordinate descent (BCD) algorithm with convergence analysis.
Numerical results on BU-3DFE database and Bosphorus databases demonstrate the effectiveness of our proposed approach.
arXiv Detail & Related papers (2022-01-29T06:11:00Z) - Patch-based medical image segmentation using Quantum Tensor Networks [1.5899411215927988]
We formulate image segmentation in a supervised setting with tensor networks.
The key idea is to first lift the pixels in image patches to exponentially high dimensional feature spaces.
The performance of the proposed model is evaluated on three 2D- and one 3D- biomedical imaging datasets.
arXiv Detail & Related papers (2021-09-15T07:54:05Z) - Overcoming Catastrophic Forgetting in Graph Neural Networks [50.900153089330175]
Catastrophic forgetting refers to the tendency that a neural network "forgets" the previous learned knowledge upon learning new tasks.
We propose a novel scheme dedicated to overcoming this problem and hence strengthen continual learning in graph neural networks (GNNs)
At the heart of our approach is a generic module, termed as topology-aware weight preserving(TWP)
arXiv Detail & Related papers (2020-12-10T22:30:25Z) - Connecting Weighted Automata, Tensor Networks and Recurrent Neural
Networks through Spectral Learning [58.14930566993063]
We present connections between three models used in different research fields: weighted finite automata(WFA) from formal languages and linguistics, recurrent neural networks used in machine learning, and tensor networks.
We introduce the first provable learning algorithm for linear 2-RNN defined over sequences of continuous vectors input.
arXiv Detail & Related papers (2020-10-19T15:28:00Z) - T-Basis: a Compact Representation for Neural Networks [89.86997385827055]
We introduce T-Basis, a concept for a compact representation of a set of tensors, each of an arbitrary shape, which is often seen in Neural Networks.
We evaluate the proposed approach on the task of neural network compression and demonstrate that it reaches high compression rates at acceptable performance drops.
arXiv Detail & Related papers (2020-07-13T19:03:22Z) - Anomaly Detection with Tensor Networks [2.3895981099137535]
We exploit the memory and computational efficiency of tensor networks to learn a linear transformation over a space with a dimension exponential in the number of original features.
We produce competitive results on image datasets, despite not exploiting the locality of images.
arXiv Detail & Related papers (2020-06-03T20:41:30Z) - Supervised Learning for Non-Sequential Data: A Canonical Polyadic
Decomposition Approach [85.12934750565971]
Efficient modelling of feature interactions underpins supervised learning for non-sequential tasks.
To alleviate this issue, it has been proposed to implicitly represent the model parameters as a tensor.
For enhanced expressiveness, we generalize the framework to allow feature mapping to arbitrarily high-dimensional feature vectors.
arXiv Detail & Related papers (2020-01-27T22:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.