論文の概要: B^2SFL: A Bi-level Blockchained Architecture for Secure Federated
Learning-based Traffic Prediction
- arxiv url: http://arxiv.org/abs/2310.14669v1
- Date: Mon, 23 Oct 2023 08:06:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 21:40:22.058997
- Title: B^2SFL: A Bi-level Blockchained Architecture for Secure Federated
Learning-based Traffic Prediction
- Title(参考訳): b^2sfl:セキュアなフェデレーション学習に基づくトラフィック予測のための2レベルブロックチェーンアーキテクチャ
- Authors: Hao Guo, Collin Meese, Wanxin Li, Chien-Chung Shen, Mark Nejad
- Abstract要約: Federated Learning(FL)は、プライバシを保存する機械学習技術である。
悪意のある参加者と集中型のFLサーバによって、セキュリティとプライバシの保証が侵害される可能性がある。
本稿では,セキュアなフェデレート学習に基づくトラフィック予測のための,双方向ブロックチェーンアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 4.3030251749726345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is a privacy-preserving machine learning (ML)
technology that enables collaborative training and learning of a global ML
model based on aggregating distributed local model updates. However, security
and privacy guarantees could be compromised due to malicious participants and
the centralized FL server. This article proposed a bi-level blockchained
architecture for secure federated learning-based traffic prediction. The bottom
and top layer blockchain store the local model and global aggregated parameters
accordingly, and the distributed homomorphic-encrypted federated averaging
(DHFA) scheme addresses the secure computation problems. We propose the partial
private key distribution protocol and a partially homomorphic
encryption/decryption scheme to achieve the distributed privacy-preserving
federated averaging model. We conduct extensive experiments to measure the
running time of DHFA operations, quantify the read and write performance of the
blockchain network, and elucidate the impacts of varying regional group sizes
and model complexities on the resulting prediction accuracy for the online
traffic flow prediction task. The results indicate that the proposed system can
facilitate secure and decentralized federated learning for real-world traffic
prediction tasks.
- Abstract(参考訳): Federated Learning(FL)は、分散ローカルモデルの更新を集約したグローバルMLモデルの協調トレーニングと学習を可能にする、プライバシ保護機械学習(ML)テクノロジである。
しかし、悪意のある参加者と集中型のflサーバによって、セキュリティとプライバシの保証が損なわれる可能性がある。
本稿では,セキュアなフェデレート学習に基づくトラフィック予測のための,双方向ブロックチェーンアーキテクチャを提案する。
ボトム層とトップ層ブロックチェーンは、ローカルモデルとグローバル集約パラメータをそれに従って格納し、分散ホモモルフィック暗号化フェデレーション平均化(DHFA)スキームは、セキュアな計算問題に対処する。
本稿では,分散プライバシ保存型平均化モデルを実現するために,部分的秘密鍵分散プロトコルと部分準同型暗号/復号化スキームを提案する。
我々は、DHFA操作の実行時間を測定し、ブロックチェーンネットワークの読み書き性能を定量化し、オンライントラフィックフロー予測タスクの予測精度に対する様々な地域グループサイズとモデル複雑度の影響を解明するための広範な実験を行った。
提案システムは,現実の交通予測タスクに対して,セキュアかつ分散化されたフェデレーション学習を容易にすることを示唆している。
関連論文リスト
- Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
ブロックチェーンのような分散型アプローチは、複数のエンティティ間でコンセンサスメカニズムを実装することで、魅力的なソリューションを提供する。
フェデレートラーニング(FL)は、参加者がデータのプライバシを保護しながら、協力的にモデルをトレーニングすることを可能にする。
本稿では,ブロックチェーンのセキュリティ機能とFLのプライバシ保護モデルトレーニング機能の相乗効果について検討する。
論文 参考訳(メタデータ) (2024-03-28T07:08:26Z) - PPBFL: A Privacy Protected Blockchain-based Federated Learning Model [6.278098707317501]
フェデレート学習の安全性を高めるために,保護型フェデレート学習モデル(PPBFL)を提案する。
本稿では,訓練ノードのインセンティブを目的とした,連邦学習に適した訓練作業証明(PoTW)アルゴリズムを提案する。
また、リングシグネチャ技術を利用した新たなミックストランザクション機構を提案し、ローカルトレーニングクライアントのIDプライバシをよりよく保護する。
論文 参考訳(メタデータ) (2024-01-02T13:13:28Z) - The Implications of Decentralization in Blockchained Federated Learning: Evaluating the Impact of Model Staleness and Inconsistencies [2.6391879803618115]
ブロックチェーンのような民主的な環境にフェデレートされた学習のオーケストレーションをアウトソーシングすることの実践的意義について検討する。
シミュレーションを用いて、よく知られたMNISTとCIFAR-10データセットに2つの異なるMLモデルを適用することにより、ブロックチェーンFL動作を評価する。
以上の結果から,モデルの不整合がモデルの精度に及ぼす影響(予測精度の最大35%低下)が示唆された。
論文 参考訳(メタデータ) (2023-10-11T13:18:23Z) - Federated Nearest Neighbor Machine Translation [66.8765098651988]
本稿では,FedNN(FedNN)機械翻訳フレームワークを提案する。
FedNNは1ラウンドの記憶に基づくインタラクションを活用して、異なるクライアント間で知識を共有する。
実験の結果,FedAvgと比較して,FedNNは計算コストと通信コストを著しく削減することがわかった。
論文 参考訳(メタデータ) (2023-02-23T18:04:07Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - Privacy-Preserved Blockchain-Federated-Learning for Medical Image
Analysis Towards Multiple Parties [5.296010468961924]
この記事では、フェデレーション付き学習とブロックチェーンに基づくプライバシ保護フレームワークを設計する。
最初のステップでは、カプセルネットワークを使用してローカルモデルをトレーニングして、COVID-19画像のセグメンテーションと分類を行います。
第2のステップでは、同型暗号方式により局所モデルを確保します。
論文 参考訳(メタデータ) (2021-04-22T07:32:04Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
ブロックチェーンをFL、すなわちブロックチェーン支援分散学習(BLADE-FL)に統合することで、分散FLフレームワークを提案する。
提案されたBLADE-FLのラウンドでは、各クライアントはトレーニング済みモデルを他のクライアントにブロードキャストし、受信したモデルに基づいてブロックを生成し、次のラウンドのローカルトレーニングの前に生成されたブロックからモデルを集約します。
遅延クライアントがblade-flの学習性能に与える影響を調査し,最適なk,学習パラメータ,遅延クライアントの割合の関係を特徴付ける。
論文 参考訳(メタデータ) (2021-01-18T07:19:08Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
データが機密性やプライベート性を持つドメインでは、ローカルデバイスを離れることなく、分散的に学習できるメソッドには大きな価値があります。
本稿では,フェデレートラーニングのためのウェイト匿名化因子化(WAFFLe)を提案する。これは,インド・バフェット・プロセスとニューラルネットワークの重み要因の共有辞書を組み合わせたアプローチである。
論文 参考訳(メタデータ) (2020-08-13T04:26:31Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
本稿では,フェデレート学習に基づくGated Recurrent Unit Neural Network Algorithm (FedGRU) というプライバシ保護機械学習手法を提案する。
FedGRUは、現在の集中学習方法と異なり、安全なパラメータアグリゲーション機構を通じて、普遍的な学習モデルを更新する。
FedGRUの予測精度は、先進的なディープラーニングモデルよりも90.96%高い。
論文 参考訳(メタデータ) (2020-03-19T13:07:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。