論文の概要: Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning
- arxiv url: http://arxiv.org/abs/2403.19178v1
- Date: Thu, 28 Mar 2024 07:08:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 17:03:08.617754
- Title: Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning
- Title(参考訳): 分散ネットワークにおける信頼とプライバシの強化 - ブロックチェーンベースのフェデレーション学習に関する包括的調査
- Authors: Ji Liu, Chunlu Chen, Yu Li, Lin Sun, Yulun Song, Jingbo Zhou, Bo Jing, Dejing Dou,
- Abstract要約: ブロックチェーンのような分散型アプローチは、複数のエンティティ間でコンセンサスメカニズムを実装することで、魅力的なソリューションを提供する。
フェデレートラーニング(FL)は、参加者がデータのプライバシを保護しながら、協力的にモデルをトレーニングすることを可能にする。
本稿では,ブロックチェーンのセキュリティ機能とFLのプライバシ保護モデルトレーニング機能の相乗効果について検討する。
- 参考スコア(独自算出の注目度): 51.13534069758711
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While centralized servers pose a risk of being a single point of failure, decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities. Merging distributed computing with cryptographic techniques, decentralized technologies introduce a novel computing paradigm. Blockchain ensures secure, transparent, and tamper-proof data management by validating and recording transactions via consensus across network nodes. Federated Learning (FL), as a distributed machine learning framework, enables participants to collaboratively train models while safeguarding data privacy by avoiding direct raw data exchange. Despite the growing interest in decentralized methods, their application in FL remains underexplored. This paper presents a thorough investigation into Blockchain-based FL (BCFL), spotlighting the synergy between blockchain's security features and FL's privacy-preserving model training capabilities. First, we present the taxonomy of BCFL from three aspects, including decentralized, separate networks, and reputation-based architectures. Then, we summarize the general architecture of BCFL systems, providing a comprehensive perspective on FL architectures informed by blockchain. Afterward, we analyze the application of BCFL in healthcare, IoT, and other privacy-sensitive areas. Finally, we identify future research directions of BCFL.
- Abstract(参考訳): 集中型サーバは単一障害点となるリスクがあるが、ブロックチェーンのような分散化されたアプローチは、複数のエンティティ間でコンセンサスメカニズムを実装することで、魅力的なソリューションを提供する。
分散コンピューティングと暗号技術を組み合わせることで、分散技術は新たなコンピューティングパラダイムを導入する。
ブロックチェーンは、ネットワークノード間のコンセンサスによるトランザクションの検証と記録によって、セキュアで透明で、不正なデータ管理を保証する。
分散機械学習フレームワークであるフェデレートラーニング(FL)は、参加者が直接の生データ交換を避けてデータのプライバシを保護しながら、協力的にモデルをトレーニングすることを可能にする。
分散化手法への関心は高まっているが、FLでの応用はいまだに未定である。
本稿では、ブロックチェーンのセキュリティ機能とFLのプライバシ保護モデルトレーニング機能との相乗効果に注目し、ブロックチェーンベースのFL(BCFL)を徹底的に調査する。
まず、分散化されたネットワークと評価に基づくアーキテクチャの3つの側面からBCFLの分類について述べる。
次に、BCFLシステムの一般的なアーキテクチャを要約し、ブロックチェーンによって通知されるFLアーキテクチャに関する包括的な視点を提供する。
その後、医療、IoT、その他のプライバシーに敏感な分野におけるBCFLの応用を分析します。
最後に,BCFLの今後の研究方向性を明らかにする。
関連論文リスト
- Graph Attention Network-based Block Propagation with Optimal AoI and Reputation in Web 3.0 [59.94605620983965]
我々は、ブロックチェーン対応Web 3.0のための、グラフ注意ネットワーク(GAT)ベースの信頼できるブロック伝搬最適化フレームワークを設計する。
ブロック伝搬の信頼性を実現するために,主観的論理モデルに基づく評価機構を導入する。
グラフ構造化データの処理能力に優れたGATが存在することを考慮し、GATを強化学習に利用して最適なブロック伝搬軌道を得る。
論文 参考訳(メタデータ) (2024-03-20T01:58:38Z) - Blockchain-empowered Federated Learning: Benefits, Challenges, and Solutions [31.18229828293164]
Federated Learning(FL)は、クライアント上でモデルをトレーニングし、パラメータサーバ上でそれらを集約することによって、ユーザのデータプライバシを保護する分散機械学習アプローチである。
プライバシーの保護には有効だが、FLシステムは単一障害点、インセンティブの欠如、セキュリティの不十分といった制限に直面している。
これらの課題に対処するため、ブロックチェーン技術はFLシステムに統合され、より強力なセキュリティ、公正性、スケーラビリティを提供する。
論文 参考訳(メタデータ) (2024-03-01T07:41:05Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence(GAI)は、ブロックチェーン技術の課題に対処するための有望なソリューションとして登場した。
本稿では、まずGAI技術を紹介し、そのアプリケーションの概要を説明し、GAIをブロックチェーンに統合するための既存のソリューションについて議論する。
論文 参考訳(メタデータ) (2024-01-28T10:46:17Z) - Privacy-Preserving in Blockchain-based Federated Learning Systems [14.658288580398974]
フェデレートラーニング(FL)は、機械学習モデルの協調トレーニングにおける革命的なアプローチとして最近登場した。
セキュリティとプライバシの懸念は、このソリューションの分散した性質に起因する。
本稿では,プライバシソリューションを定義するために,科学コミュニティが実施した研究成果について考察する。
論文 参考訳(メタデータ) (2024-01-07T17:23:55Z) - Blockchain-empowered Federated Learning for Healthcare Metaverses:
User-centric Incentive Mechanism with Optimal Data Freshness [66.3982155172418]
まず、医療メタバースのための分散型フェデレートラーニング(FL)に基づく、ユーザ中心のプライバシ保護フレームワークを設計する。
次に,情報時代(AoI)を有効データ更新度指標として利用し,観測理論(PT)に基づくAoIベースの契約理論モデルを提案し,センシングデータ共有の動機付けを行う。
論文 参考訳(メタデータ) (2023-07-29T12:54:03Z) - A Survey on Secure and Private Federated Learning Using Blockchain:
Theory and Application in Resource-constrained Computing [0.8029049649310213]
フェデレートラーニング(FL)は、先進的な機械学習と人工知能の急速なブームにより、近年広く普及している。
FLプロセスのパフォーマンスは脅威になり、サイバー脅威の増加やプライバシー侵害のテクニックによってボトルネックに陥る可能性がある。
FLプロセスの普及を早めるために、FL環境のためのブロックチェーンの統合は、アカデミックや業界の人々から多くの注目を集めている。
論文 参考訳(メタデータ) (2023-03-24T00:40:08Z) - A Systematic Survey of Blockchained Federated Learning [22.710611199826925]
フェデレートラーニング(FL)は、複数のクライアントにトレーニングタスクを割り当てることで、プライバシーの漏洩を防止する。
FLはシングルポイント障害や悪意のあるデータといった欠点に悩まされている。
ブロックチェーンの出現は、FLをデプロイするためのセキュアで効率的なソリューションを提供する。
論文 参考訳(メタデータ) (2021-10-05T17:21:52Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
ブロックチェーンをFL、すなわちブロックチェーン支援分散学習(BLADE-FL)に統合することで、分散FLフレームワークを提案する。
提案されたBLADE-FLのラウンドでは、各クライアントはトレーニング済みモデルを他のクライアントにブロードキャストし、受信したモデルに基づいてブロックを生成し、次のラウンドのローカルトレーニングの前に生成されたブロックからモデルを集約します。
遅延クライアントがblade-flの学習性能に与える影響を調査し,最適なk,学習パラメータ,遅延クライアントの割合の関係を特徴付ける。
論文 参考訳(メタデータ) (2021-01-18T07:19:08Z) - Resource Management for Blockchain-enabled Federated Learning: A Deep
Reinforcement Learning Approach [54.29213445674221]
Federated Learning (BFL)は、機械学習モデル所有者(MLMO)が必要とするニューラルネットワークモデルを、モバイルデバイスが協調的にトレーニングすることを可能にする。
BFLの問題は、モバイルデバイスがシステムの寿命とトレーニング効率を低下させるエネルギーとCPUの制約を持っていることである。
我々は,Deep Reinforcement Learning (DRL) を用いて最適決定を導出することを提案する。
論文 参考訳(メタデータ) (2020-04-08T16:29:19Z) - A Blockchain-based Decentralized Federated Learning Framework with
Committee Consensus [20.787163387487816]
モバイルコンピューティングのシナリオでは、フェデレートされた学習は、ユーザがプライベートデータを公開することを防ぐと同時に、さまざまな現実世界のアプリケーションのためにグローバルモデルを協調的にトレーニングする。
悪意のあるクライアントや、グローバルモデルやユーザプライバシデータに対する中央サーバの攻撃により、フェデレートドラーニングのセキュリティはますます疑問視されている。
本稿では,ブロックチェーンに基づく分散型フェデレーション学習フレームワーク,すなわち委員会コンセンサス(BFLC)フレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-02T02:04:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。