論文の概要: Tree of Clarifications: Answering Ambiguous Questions with
Retrieval-Augmented Large Language Models
- arxiv url: http://arxiv.org/abs/2310.14696v1
- Date: Mon, 23 Oct 2023 08:42:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 21:28:39.422563
- Title: Tree of Clarifications: Answering Ambiguous Questions with
Retrieval-Augmented Large Language Models
- Title(参考訳): 明確化のツリー:検索強化大言語モデルによるあいまいな質問への回答
- Authors: Gangwoo Kim, Sungdong Kim, Byeongguk Jeon, Joonsuk Park, Jaewoo Kang
- Abstract要約: Tree of Clarifications (ToC)は、曖昧な質問に対する長文の回答を生成するフレームワークである。
ToCは、メトリクス間で数ショットのセットアップで、ASQAの既存のベースラインを上回ります。
- 参考スコア(独自算出の注目度): 30.186503757127188
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Questions in open-domain question answering are often ambiguous, allowing
multiple interpretations. One approach to handling them is to identify all
possible interpretations of the ambiguous question (AQ) and to generate a
long-form answer addressing them all, as suggested by Stelmakh et al., (2022).
While it provides a comprehensive response without bothering the user for
clarification, considering multiple dimensions of ambiguity and gathering
corresponding knowledge remains a challenge. To cope with the challenge, we
propose a novel framework, Tree of Clarifications (ToC): It recursively
constructs a tree of disambiguations for the AQ -- via few-shot prompting
leveraging external knowledge -- and uses it to generate a long-form answer.
ToC outperforms existing baselines on ASQA in a few-shot setup across the
metrics, while surpassing fully-supervised baselines trained on the whole
training set in terms of Disambig-F1 and Disambig-ROUGE. Code is available at
https://github.com/gankim/tree-of-clarifications.
- Abstract(参考訳): オープンドメインの質問に答える質問はしばしば曖昧で、複数の解釈が可能である。
それらを扱う1つのアプローチは、あいまいな質問(aq)の可能な全ての解釈を識別し、stlmakh et al. (2022) が提案したように、それら全てに対応するロングフォームな回答を生成することである。
ユーザを悩ませることなく総合的な応答を提供するが、曖昧さの多次元を考慮し、対応する知識を収集することは依然として課題である。
この課題に対処するために、我々は新しい枠組みであるtoc(tree of clarifications)を提案している。これは再帰的にaqの曖昧さのない木を構築する。
ToCは、Disambig-F1とDisambig-ROUGEでトレーニングされたトレーニングセット全体において、完全に教師されたベースラインを越えながら、ASQAの既存のベースラインを数ショットで上回っている。
コードはhttps://github.com/gankim/tree-of-clarificationsで入手できる。
関連論文リスト
- Unsupervised multiple choices question answering via universal corpus [27.78825771434918]
本稿では,MCQAデータを生成するための新しいフレームワークを提案する。
我々は、名前付きエンティティ(NE)と知識グラフの両方を活用して、完全な合成サンプルを形成するための可視な乱れを発見する。
論文 参考訳(メタデータ) (2024-02-27T09:10:28Z) - Probabilistic Tree-of-thought Reasoning for Answering
Knowledge-intensive Complex Questions [93.40614719648386]
大規模言語モデル(LLM)は、知識集約的な複雑な質問にチェーン・オブ・シント(CoT)推論で答えることができる。
最近の研究は、CoT推論を強化するための外部知識の回収に向けられている。
確率的ツリー・オブ・シント推論(ProbTree)という新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-11-23T12:52:37Z) - Long-form Question Answering: An Iterative Planning-Retrieval-Generation
Approach [28.849548176802262]
長文質問応答(LFQA)は,段落の形で詳細な回答を生成するため,課題となる。
本稿では,反復計画,検索,生成を伴うLFQAモデルを提案する。
我々のモデルはLFQAタスクの様々なテキストおよび実測値の最先端モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-15T21:22:27Z) - Open-Set Knowledge-Based Visual Question Answering with Inference Paths [79.55742631375063]
知識に基づく視覚的質問回答(KB-VQA)の目的は、外部知識ベースの助けを借りて質問に対する正しい回答を提供することである。
KB-VQA, Graph pATH ranker (GATHER for brevity) の新しいレトリバーランカパラダイムを提案する。
具体的には、グラフの構築、プルーニング、パスレベルのランク付けが含まれており、正確な回答を検索するだけでなく、推論パスを提供して推論プロセスを説明する。
論文 参考訳(メタデータ) (2023-10-12T09:12:50Z) - Answering Ambiguous Questions via Iterative Prompting [84.3426020642704]
オープンドメインの質問応答では、質問のあいまいさのため、複数の妥当な回答が存在する可能性がある。
ひとつのアプローチは、すべての有効な回答を直接予測することですが、これは、妥当性と多様性のバランスに苦労する可能性があります。
本稿では,あいまいな疑問に答える既存手法の欠陥に対処するため,AmbigPromptを提案する。
論文 参考訳(メタデータ) (2023-07-08T04:32:17Z) - Reasoning over Hierarchical Question Decomposition Tree for Explainable
Question Answering [83.74210749046551]
ヘテロジニアス知識統合のための質問分解手法を提案する。
階層的質問分解木(RoHT)を用いた新しい2段階XQAフレームワークを提案する。
複雑なQAデータセットKQA ProとMusiqueの実験は、我々のフレームワークがSOTAメソッドを著しく上回っていることを示している。
論文 参考訳(メタデータ) (2023-05-24T11:45:59Z) - Asking Clarification Questions to Handle Ambiguity in Open-Domain QA [25.80369529145732]
本稿では,ユーザの反応がユーザの意図に最も合致する解釈を識別する上で有効であることを示す。
最初に,5,654の曖昧な質問からなるデータセットであるCAMBIGNQを提示する。
次にタスクのパイプラインを定義し、適切な評価指標を設計します。
論文 参考訳(メタデータ) (2023-05-23T08:20:01Z) - Keeping the Questions Conversational: Using Structured Representations
to Resolve Dependency in Conversational Question Answering [26.997542897342164]
本稿では,中間表現を会話の手がかりとして捉え,生成するための新しいフレームワークCONVSR(CONVQA using Structured Representations)を提案する。
我々はQuACとCANARDのデータセット上でモデルをテストし、提案するフレームワークが標準的な質問書き直しモデルよりも優れたF1スコアを達成できることを実験結果により示す。
論文 参考訳(メタデータ) (2023-04-14T13:42:32Z) - Multifaceted Improvements for Conversational Open-Domain Question
Answering [54.913313912927045]
対話型オープンドメイン質問回答(MICQA)のための多面的改善フレームワークを提案する。
第一に、提案したKL分割に基づく正規化は、検索と解答のためのより良い質問理解をもたらすことができる。
第二に、追加されたポストランカモジュールは、より関連性の高いパスをトップにプッシュし、2アスペクトの制約で読者に選択できる。
第3に、十分に設計されたカリキュラム学習戦略は、訓練と推論の黄金の通路設定のギャップを効果的に狭め、黄金の通路支援なしで真の答えを見つけることを奨励する。
論文 参考訳(メタデータ) (2022-04-01T07:54:27Z) - ClarQ: A large-scale and diverse dataset for Clarification Question
Generation [67.1162903046619]
そこで我々は,スタックエクスチェンジから抽出したポストコメンデーションに基づいて,多様な,大規模な明確化質問データセットの作成を支援する,新しいブートストラップフレームワークを考案した。
質問応答の下流タスクに適用することで,新たに作成したデータセットの有用性を定量的に示す。
我々はこのデータセットを公開し、ダイアログと質問応答システムの拡張という大きな目標を掲げて、質問生成の分野の研究を促進する。
論文 参考訳(メタデータ) (2020-06-10T17:56:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。