論文の概要: Linking Surface Facts to Large-Scale Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2310.14909v1
- Date: Mon, 23 Oct 2023 13:18:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 19:57:09.514984
- Title: Linking Surface Facts to Large-Scale Knowledge Graphs
- Title(参考訳): 表面ファクトと大規模知識グラフのリンク
- Authors: Gorjan Radevski, Kiril Gashteovski, Chia-Chien Hung, Carolin Lawrence,
Goran Glava\v{s}
- Abstract要約: Open Information extract (OIE)メソッドは、自然言語のテキストから、"subject"、"relation"、"object"の三重項の形で事実を抽出する。
知識グラフ(KG)は、正準形式(すなわち曖昧な形式)の事実を含むが、そのカバレッジは静的スキーマによって制限される。
本稿では,例えば,ファクトリンク性能を粒度三重スロットレベルで測定できる新しい評価プロトコルを用いたベンチマークを提案する。
- 参考スコア(独自算出の注目度): 23.380979397966286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Open Information Extraction (OIE) methods extract facts from natural language
text in the form of ("subject"; "relation"; "object") triples. These facts are,
however, merely surface forms, the ambiguity of which impedes their downstream
usage; e.g., the surface phrase "Michael Jordan" may refer to either the former
basketball player or the university professor. Knowledge Graphs (KGs), on the
other hand, contain facts in a canonical (i.e., unambiguous) form, but their
coverage is limited by a static schema (i.e., a fixed set of entities and
predicates). To bridge this gap, we need the best of both worlds: (i) high
coverage of free-text OIEs, and (ii) semantic precision (i.e., monosemy) of
KGs. In order to achieve this goal, we propose a new benchmark with novel
evaluation protocols that can, for example, measure fact linking performance on
a granular triple slot level, while also measuring if a system has the ability
to recognize that a surface form has no match in the existing KG. Our extensive
evaluation of several baselines show that detection of out-of-KG entities and
predicates is more difficult than accurate linking to existing ones, thus
calling for more research efforts on this difficult task. We publicly release
all resources (data, benchmark and code) on
https://github.com/nec-research/fact-linking.
- Abstract(参考訳): Open Information extract (OIE)メソッドは、自然言語のテキストから、"subject"、"relation"、"object"の三重項の形で事実を抽出する。
しかし、これらの事実は単に表面的な形であり、その曖昧さは下流での使用を妨げている。例えば、「マイケル・ジョーダン」という表面的なフレーズは、元バスケットボール選手または大学教授を指すこともある。
一方、知識グラフ (KGs) には正準形式 (unambiguous) の事実が含まれているが、そのカバレッジは静的スキーマ (固定されたエンティティと述語) によって制限されている。
このギャップを埋めるには、両方の世界のベストが必要です。
(i)フリーテキストoiesの高精細化、
(ii)KGsの意味的精度(すなわち単意味)
この目的を達成するために,新しい評価プロトコルを用いたベンチマークを提案し,例えば,粒度三重スロットレベルでの事実リンク性能を計測し,また,既存のkgで表面形状が一致していないことを認識できるかどうかを計測する。
いくつかのベースラインを広範囲に評価した結果、既存のものとの正確なリンクよりも、KG以外のエンティティや述語の検出がより困難であることが示され、この困難なタスクに対するさらなる研究の取り組みが求められます。
私たちはすべてのリソース(データ、ベンチマーク、コード)をhttps://github.com/nec-research/fact-linkingで公開しています。
関連論文リスト
- Can LLMs be Good Graph Judger for Knowledge Graph Construction? [33.958327252291]
本稿では,上記の課題に対処するための知識グラフ構築フレームワークであるGraphJudgerを提案する。
提案手法には,エンティティ中心の反復的テキスト記述,知識認識型指導チューニング,グラフ判断の3つの革新的なモジュールが導入されている。
2つの一般的なテキストグラフペアデータセットと1つのドメイン固有のテキストグラフペアデータセットによる実験は、ベースライン法と比較して優れた性能を示した。
論文 参考訳(メタデータ) (2024-11-26T12:46:57Z) - EntailE: Introducing Textual Entailment in Commonsense Knowledge Graph
Completion [54.12709176438264]
Commonsense knowledge graph(CSKG)は、名前付きエンティティ、短いフレーズ、イベントをノードとして表現するために自由形式のテキストを使用する。
現在の手法では意味的類似性を利用してグラフ密度を増大させるが、ノードとその関係のセマンティックな妥当性は未探索である。
そこで本研究では,CSKGノード間の暗黙的な包絡関係を見つけるために,テキストエンテーメントを導入し,同じ概念クラス内のサブグラフ接続ノードを効果的に密度化することを提案する。
論文 参考訳(メタデータ) (2024-02-15T02:27:23Z) - Text-To-KG Alignment: Comparing Current Methods on Classification Tasks [2.191505742658975]
知識グラフ(KG)は、事実情報の密集した構造化された表現を提供する。
最近の研究は、追加のコンテキストとしてKGから情報を取得するパイプラインモデルの作成に重点を置いている。
現在のメソッドが、アライメントされたサブグラフがクエリに完全に関連しているシナリオとどのように比較されているかは分かっていない。
論文 参考訳(メタデータ) (2023-06-05T13:45:45Z) - Text-Augmented Open Knowledge Graph Completion via Pre-Trained Language
Models [53.09723678623779]
本稿では,高品質なクエリプロンプトを自動的に生成し,大規模テキストコーパスからサポート情報を取得するためのTAGREALを提案する。
その結果、TAGREALは2つのベンチマークデータセット上で最先端のパフォーマンスを達成することがわかった。
TAGREALは、限られたトレーニングデータであっても、既存の埋め込みベース、グラフベース、およびPLMベースの手法よりも優れた性能を有することが判明した。
論文 参考訳(メタデータ) (2023-05-24T22:09:35Z) - Joint Language Semantic and Structure Embedding for Knowledge Graph
Completion [66.15933600765835]
本稿では,知識三重項の自然言語記述と構造情報とを共同で組み込むことを提案する。
本手法は,学習済み言語モデルを微調整することで,完了作業のための知識グラフを埋め込む。
各種知識グラフベンチマーク実験により,本手法の最先端性能を実証した。
論文 参考訳(メタデータ) (2022-09-19T02:41:02Z) - SKILL: Structured Knowledge Infusion for Large Language Models [46.34209061364282]
構造化知識を大規模言語モデル(LLM)に注入する手法を提案する。
Wikidata KGで事前学習したモデルは,FreebaseQAとWikiHopのT5ベースラインよりも優れていることを示す。
また,T5ベースラインと比較して,MetaQAタスクの正確なマッチスコアが3倍向上した。
論文 参考訳(メタデータ) (2022-05-17T09:12:22Z) - Trustworthy Knowledge Graph Completion Based on Multi-sourced Noisy Data [35.938323660176145]
我々は,KGにおけるマルチソースノイズデータと既存事実に基づく知識グラフの事実を利用する,信頼に値する新しい手法を提案する。
具体的には,総合的なスコアリング機能を備えたグラフニューラルネットワークを導入し,さまざまな値型で事実の妥当性を判定する。
本稿では、データソースの品質を事実スコアリング機能に組み込んだ真理推論モデルを提案し、異質な値から真理を推測する半教師付き学習方法を設計する。
論文 参考訳(メタデータ) (2022-01-21T07:59:16Z) - KILT: a Benchmark for Knowledge Intensive Language Tasks [102.33046195554886]
知識集約型言語タスク(KILT)のベンチマークを示す。
KILTのすべてのタスクはウィキペディアのスナップショットと同じだ。
共有密度ベクトル指数とSeq2seqモデルとの結合が強いベースラインであることが分かる。
論文 参考訳(メタデータ) (2020-09-04T15:32:19Z) - Efficient Knowledge Graph Validation via Cross-Graph Representation
Learning [40.570585195713704]
ノイズの多い事実は、自動抽出によって引き起こされる可能性のある知識グラフに必然的に導入されます。
対象KGの事実を効率的に検証するために外部KGを活用するクロスグラフ表現学習フレームワークであるCrossValを提案する。
論文 参考訳(メタデータ) (2020-08-16T20:51:17Z) - Structure-Augmented Text Representation Learning for Efficient Knowledge
Graph Completion [53.31911669146451]
人為的な知識グラフは、様々な自然言語処理タスクに重要な支援情報を提供する。
これらのグラフは通常不完全であり、自動補完を促す。
グラフ埋め込みアプローチ(例えばTransE)は、グラフ要素を密度の高い埋め込みに表現することで構造化された知識を学ぶ。
テキストエンコーディングアプローチ(KG-BERTなど)は、グラフトリプルのテキストとトリプルレベルの文脈化表現を利用する。
論文 参考訳(メタデータ) (2020-04-30T13:50:34Z) - Generative Adversarial Zero-Shot Relational Learning for Knowledge
Graphs [96.73259297063619]
我々は、この厄介なキュレーションを解放するために、新しい定式化、ゼロショット学習を考える。
新たに追加された関係について,テキスト記述から意味的特徴を学習しようと試みる。
我々は,GAN(Generative Adrial Networks)を活用し,テキストと知識グラフ領域の接続を確立する。
論文 参考訳(メタデータ) (2020-01-08T01:19:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。