論文の概要: KG-CF: Knowledge Graph Completion with Context Filtering under the Guidance of Large Language Models
- arxiv url: http://arxiv.org/abs/2501.02711v1
- Date: Mon, 06 Jan 2025 01:52:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:09:22.099482
- Title: KG-CF: Knowledge Graph Completion with Context Filtering under the Guidance of Large Language Models
- Title(参考訳): KG-CF:大規模言語モデルによる文脈フィルタリングによる知識グラフ補完
- Authors: Zaiyi Zheng, Yushun Dong, Song Wang, Haochen Liu, Qi Wang, Jundong Li,
- Abstract要約: KG-CFはランキングベースの知識グラフ補完タスクに適したフレームワークである。
KG-CFは、LLMの推論能力を活用して、無関係なコンテキストをフィルタリングし、現実世界のデータセットで優れた結果を得る。
- 参考スコア(独自算出の注目度): 55.39134076436266
- License:
- Abstract: Large Language Models (LLMs) have shown impressive performance in various tasks, including knowledge graph completion (KGC). However, current studies mostly apply LLMs to classification tasks, like identifying missing triplets, rather than ranking-based tasks, where the model ranks candidate entities based on plausibility. This focus limits the practical use of LLMs in KGC, as real-world applications prioritize highly plausible triplets. Additionally, while graph paths can help infer the existence of missing triplets and improve completion accuracy, they often contain redundant information. To address these issues, we propose KG-CF, a framework tailored for ranking-based KGC tasks. KG-CF leverages LLMs' reasoning abilities to filter out irrelevant contexts, achieving superior results on real-world datasets. The code and datasets are available at \url{https://anonymous.4open.science/r/KG-CF}.
- Abstract(参考訳): 大規模言語モデル(LLM)は知識グラフ補完(KGC)など、様々なタスクにおいて顕著なパフォーマンスを示している。
しかし、最近の研究では、ランキングベースのタスクではなく、欠落した三つ子を識別するといった分類タスクに LLM を適用している。
この焦点は、現実世界のアプリケーションが高可塑性三重項を優先しているため、KGCにおけるLLMの実用的使用を制限する。
さらに、グラフパスは、欠落している三つ子の存在を推測し、完了精度を向上させるのに役立つが、しばしば冗長な情報を含んでいる。
これらの課題に対処するため、ランキングベースのKGCタスクに適したフレームワークであるKG-CFを提案する。
KG-CFは、LLMの推論能力を活用して、無関係なコンテキストをフィルタリングし、現実世界のデータセットで優れた結果を得る。
コードとデータセットは \url{https://anonymous.4open.science/r/KG-CF} で公開されている。
関連論文リスト
- GLTW: Joint Improved Graph Transformer and LLM via Three-Word Language for Knowledge Graph Completion [52.026016846945424]
我々は、KGの構造情報をエンコードし、それを大規模言語モデルにマージするGLTWと呼ばれる新しい手法を提案する。
具体的には、局所構造情報とグローバル構造情報の両方を効果的に符号化する改良されたグラフ変換器(iGT)を導入する。
また,KG内のすべてのエンティティを分類対象として用いたサブグラフに基づく多分類学習目標を開発し,学習効率を向上する。
論文 参考訳(メタデータ) (2025-02-17T06:02:59Z) - Is Large Language Model Good at Triple Set Prediction? An Empirical Study [12.094218772036596]
このフレームワークは、LLMベースのルールマイニングとLLMベースのトリプルセット予測で構成されている。
実験結果から,LSMが欠落した三重項を予測するために大量の事実知識に従わなければならない場合,幻覚が顕著に発生し,性能が著しく低下することが示唆された。
論文 参考訳(メタデータ) (2024-12-24T14:03:07Z) - Can LLMs be Good Graph Judger for Knowledge Graph Construction? [33.958327252291]
本稿では,上記の課題に対処するための知識グラフ構築フレームワークであるGraphJudgerを提案する。
提案手法には,エンティティ中心の反復的テキスト記述,知識認識型指導チューニング,グラフ判断の3つの革新的なモジュールが導入されている。
2つの一般的なテキストグラフペアデータセットと1つのドメイン固有のテキストグラフペアデータセットによる実験は、ベースライン法と比較して優れた性能を示した。
論文 参考訳(メタデータ) (2024-11-26T12:46:57Z) - Decoding on Graphs: Faithful and Sound Reasoning on Knowledge Graphs through Generation of Well-Formed Chains [66.55612528039894]
知識グラフ(KG)は質問応答(QA)のための信頼できる知識ソースとして機能する。
我々は、LLMとKGの深い相乗効果を促進する新しいフレームワークであるDoG(Decoding on Graphs)を提案する。
様々なKGQAタスクに対して異なるバックグラウンドKGを用いた実験により、DoGが優れた、堅牢なパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-10-24T04:01:40Z) - Can Large Language Models Analyze Graphs like Professionals? A Benchmark, Datasets and Models [90.98855064914379]
グラフを処理するために,大規模言語モデル(LLM)のベンチマークであるProGraphを導入する。
その結果,現在のLCMの性能は不満足であり,最高のモデルでは36%の精度しか達成できないことがわかった。
本研究では,6つの広く使用されているグラフライブラリに基づいて,クローリングされたドキュメントと自動生成コードを含むLLM4Graphデータセットを提案する。
論文 参考訳(メタデータ) (2024-09-29T11:38:45Z) - Harnessing the Power of Semi-Structured Knowledge and LLMs with Triplet-Based Prefiltering for Question Answering [2.6524539020042663]
大きな言語モデル(LLM)はドメイン固有の知識を欠くことが多く、微調整されたモデルでさえ幻覚を起こす傾向がある。
パイプラインである4StepFocus、具体的には前処理のステップを示し、LCMの回答を大幅に改善する。
この手法は、半構造化知識ベースで三重項に基づく検索によって、直接的かつトレース可能な方法で、潜在的に正しい答えを絞り込む。
論文 参考訳(メタデータ) (2024-09-01T22:43:27Z) - GS-KGC: A Generative Subgraph-based Framework for Knowledge Graph Completion with Large Language Models [7.995716933782121]
我々は textbfGenerative textbfSubgraph-based KGC (GS-KGC) と呼ばれる新しい補完フレームワークを提案する。
このフレームワークは、主に負と隣人を生成するように設計された部分グラフ分割アルゴリズムを含んでいる。
4つの共通のKGCデータセットで実施された実験は、提案されたGS-KGCの利点を強調している。
論文 参考訳(メタデータ) (2024-08-20T13:13:41Z) - Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering [87.67177556994525]
我々は、知識グラフ(KG)を探索しながら、新しい実写トリプルを生成する、Generate-on-Graph(GoG)と呼ばれる学習自由な手法を提案する。
GoGはIKGQAでLLMをエージェントとKGの両方として扱うThinking-Searching-Generatingフレームワークを通じて推論を行う。
論文 参考訳(メタデータ) (2024-04-23T04:47:22Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
大規模言語モデル (LLMs) が最前線として登場し、様々なアプリケーションにおいて非並列の長所を示している。
LLMとグラフ構造化データを組み合わせることは、非常に興味深いトピックです。
本稿では、そのような統合を2つの主要なカテゴリに分岐する。
論文 参考訳(メタデータ) (2023-10-09T07:59:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。