論文の概要: Robust Depth Linear Error Decomposition with Double Total Variation and
Nuclear Norm for Dynamic MRI Reconstruction
- arxiv url: http://arxiv.org/abs/2310.14934v1
- Date: Mon, 23 Oct 2023 13:34:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 19:45:14.311193
- Title: Robust Depth Linear Error Decomposition with Double Total Variation and
Nuclear Norm for Dynamic MRI Reconstruction
- Title(参考訳): 動的MRI再建のための二重全変量と核ノルムによるロバスト深さ線形誤差分解
- Authors: Junpeng Tan, Chunmei Qing, Xiangmin Xu
- Abstract要約: Compressed Sensing (CS) に基づく動的MRI k-space 再構成にはまだ問題がある。
本稿では,高アンダーサンプリングフーリエ変換(DFT)を用いた高低レート動的MRI再構成モデルを提案する。
動的MRIデータに対する実験は、再構成精度と時間複雑性の両方の観点から、優れた性能を示す。
- 参考スコア(独自算出の注目度): 15.444386058967579
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compressed Sensing (CS) significantly speeds up Magnetic Resonance Image
(MRI) processing and achieves accurate MRI reconstruction from under-sampled
k-space data. According to the current research, there are still several
problems with dynamic MRI k-space reconstruction based on CS. 1) There are
differences between the Fourier domain and the Image domain, and the
differences between MRI processing of different domains need to be considered.
2) As three-dimensional data, dynamic MRI has its spatial-temporal
characteristics, which need to calculate the difference and consistency of
surface textures while preserving structural integrity and uniqueness. 3)
Dynamic MRI reconstruction is time-consuming and computationally
resource-dependent. In this paper, we propose a novel robust low-rank dynamic
MRI reconstruction optimization model via highly under-sampled and Discrete
Fourier Transform (DFT) called the Robust Depth Linear Error Decomposition
Model (RDLEDM). Our method mainly includes linear decomposition, double Total
Variation (TV), and double Nuclear Norm (NN) regularizations. By adding linear
image domain error analysis, the noise is reduced after under-sampled and DFT
processing, and the anti-interference ability of the algorithm is enhanced.
Double TV and NN regularizations can utilize both spatial-temporal
characteristics and explore the complementary relationship between different
dimensions in dynamic MRI sequences. In addition, Due to the non-smoothness and
non-convexity of TV and NN terms, it is difficult to optimize the unified
objective model. To address this issue, we utilize a fast algorithm by solving
a primal-dual form of the original problem. Compared with five state-of-the-art
methods, extensive experiments on dynamic MRI data demonstrate the superior
performance of the proposed method in terms of both reconstruction accuracy and
time complexity.
- Abstract(参考訳): 圧縮センシング(CS)はMRI処理を著しく高速化し、アンダーサンプリングされたk空間データから正確なMRI再構成を実現する。
現在の研究によると、CSに基づく動的MRIのk空間再構成にはいくつかの問題がある。
1) フーリエ領域と画像領域には違いがあり, 異なる領域のMRI処理の違いを考慮する必要がある。
2) 三次元データとして, 動的MRIは空間的時間的特性を持ち, 構造的整合性と特異性を保ちながら表面テクスチャの違いと一貫性を計算する必要がある。
3) 動的MRI再構成は時間と計算資源に依存している。
本稿では,ロバスト深さ線形誤差分解モデル (RDLEDM) と呼ばれる,高アンダーサンプリングおよび離散フーリエ変換(DFT)による高低ランクな動的MRI再構成モデルを提案する。
本手法は主に、線形分解、二重全変量(TV)、二重核ノルム(NN)正規化を含む。
線形画像領域誤差解析を追加することにより、アンダーサンプリング処理およびDFT処理後にノイズを低減し、アルゴリズムの干渉防止能力を向上する。
二重テレビとNNの正規化は、時空間特性を両立させ、動的MRIシーケンスにおける異なる次元間の相補関係を探索することができる。
また,テレビやNN用語の非平滑性と非凸性のため,統一目的モデルの最適化は困難である。
この問題に対処するために,元の問題の原始双対形式を解くことにより,高速アルゴリズムを利用する。
5つの最先端手法と比較して、動的MRIデータに対する広範な実験は、再構成精度と時間複雑性の両方の観点から提案手法の優れた性能を示す。
関連論文リスト
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - IMJENSE: Scan-specific Implicit Representation for Joint Coil
Sensitivity and Image Estimation in Parallel MRI [11.159664312706704]
IMJENSEは、並列MRI再構成を改善するためのスキャン特異的暗黙の神経表現に基づく方法である。
IMJENSEは、MRI画像とコイル感度の強力な連続表現と共同推定により、従来の画像やk空間領域再構成アルゴリズムよりも優れた性能を発揮する。
論文 参考訳(メタデータ) (2023-11-21T07:24:11Z) - Deep Cardiac MRI Reconstruction with ADMM [7.694990352622926]
心臓画像の分野では, 深層学習(DL)を用いたシネ・マルチコントラスト再建法を提案する。
提案手法は画像領域とk空間領域の両方を最適化し,高い再構成精度を実現する。
論文 参考訳(メタデータ) (2023-10-10T13:46:11Z) - Image Reconstruction for Accelerated MR Scan with Faster Fourier
Convolutional Neural Networks [87.87578529398019]
部分走査は、磁気共鳴イメージング(MRI)データ取得を2次元および3次元の両方で加速する一般的な手法である。
本稿では,Faster Fourier Convolution (FasterFC) と呼ばれる新しい畳み込み演算子を提案する。
2次元加速MRI法であるFasterFC-End-to-End-VarNetは、FasterFCを用いて感度マップと再構成品質を改善する。
k空間領域再構成を誘導する単一グループアルゴリズムを用いたFasterFC-based Single-to-group Network (FAS-Net) と呼ばれる3次元加速MRI法
論文 参考訳(メタデータ) (2023-06-05T13:53:57Z) - Spatiotemporal implicit neural representation for unsupervised dynamic
MRI reconstruction [11.661657147506519]
Inlicit Neuraltruth (INR) は逆問題を解決するための強力なDLベースのツールとして登場した。
本研究では,高度にアンサンプされたk空間データから動的MRI再構成を改善するためのINRに基づく手法を提案する。
提案したINRは、ダイナミックMRI画像を暗黙の関数として表現し、それらをニューラルネットワークにエンコードする。
論文 参考訳(メタデータ) (2022-12-31T05:43:21Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - Multi-head Cascaded Swin Transformers with Attention to k-space Sampling
Pattern for Accelerated MRI Reconstruction [16.44971774468092]
我々は,McSTRA(Multi-head Cascaded Swin Transformer)と題する,物理学に基づくスタンドアロン(畳み込みフリー)トランスモデルを提案する。
当モデルでは, 画像と定量的に, 最先端のMRI再建法より有意に優れていた。
論文 参考訳(メタデータ) (2022-07-18T07:21:56Z) - Cross-Modality High-Frequency Transformer for MR Image Super-Resolution [100.50972513285598]
我々はTransformerベースのMR画像超解像フレームワークを構築するための初期の取り組みを構築した。
我々は、高周波構造とモード間コンテキストを含む2つの領域先行について考察する。
我々は,Cross-modality High- frequency Transformer (Cohf-T)と呼ばれる新しいTransformerアーキテクチャを構築し,低解像度画像の超解像化を実現する。
論文 参考訳(メタデータ) (2022-03-29T07:56:55Z) - ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer [60.27951773998535]
本稿では,MRI再構成のためのリカレントトランスモデルである textbfReconFormer を提案する。
高度にアンダーサンプリングされたk空間データから高純度磁気共鳴像を反復的に再構成することができる。
パラメータ効率が向上し,最先端手法よりも大幅に向上したことを示す。
論文 参考訳(メタデータ) (2022-01-23T21:58:19Z) - Fine-tuning deep learning model parameters for improved super-resolution
of dynamic MRI with prior-knowledge [0.3914676152740142]
本研究は,空間情報を最大化するために,事前知識に基づく微調整による超解像(SR)MRI再構成を提案する。
損失のあるU-Netベースのネットワークをベンチマークでトレーニングし、1つの被写体固有の静的高分解能MRIを用いて微調整を行い、高分解能ダイナミック画像を得る。
論文 参考訳(メタデータ) (2021-02-04T16:11:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。