論文の概要: IMJENSE: Scan-specific Implicit Representation for Joint Coil
Sensitivity and Image Estimation in Parallel MRI
- arxiv url: http://arxiv.org/abs/2311.12892v1
- Date: Tue, 21 Nov 2023 07:24:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 17:36:50.680235
- Title: IMJENSE: Scan-specific Implicit Representation for Joint Coil
Sensitivity and Image Estimation in Parallel MRI
- Title(参考訳): imjense:並列mriにおける関節コイル感度と画像推定のためのスキャン特異的暗黙表現
- Authors: Ruimin Feng, Qing Wu, Jie Feng, Huajun She, Chunlei Liu, Yuyao Zhang,
and Hongjiang Wei
- Abstract要約: IMJENSEは、並列MRI再構成を改善するためのスキャン特異的暗黙の神経表現に基づく方法である。
IMJENSEは、MRI画像とコイル感度の強力な連続表現と共同推定により、従来の画像やk空間領域再構成アルゴリズムよりも優れた性能を発揮する。
- 参考スコア(独自算出の注目度): 11.159664312706704
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parallel imaging is a commonly used technique to accelerate magnetic
resonance imaging (MRI) data acquisition. Mathematically, parallel MRI
reconstruction can be formulated as an inverse problem relating the sparsely
sampled k-space measurements to the desired MRI image. Despite the success of
many existing reconstruction algorithms, it remains a challenge to reliably
reconstruct a high-quality image from highly reduced k-space measurements.
Recently, implicit neural representation has emerged as a powerful paradigm to
exploit the internal information and the physics of partially acquired data to
generate the desired object. In this study, we introduced IMJENSE, a
scan-specific implicit neural representation-based method for improving
parallel MRI reconstruction. Specifically, the underlying MRI image and coil
sensitivities were modeled as continuous functions of spatial coordinates,
parameterized by neural networks and polynomials, respectively. The weights in
the networks and coefficients in the polynomials were simultaneously learned
directly from sparsely acquired k-space measurements, without fully sampled
ground truth data for training. Benefiting from the powerful continuous
representation and joint estimation of the MRI image and coil sensitivities,
IMJENSE outperforms conventional image or k-space domain reconstruction
algorithms. With extremely limited calibration data, IMJENSE is more stable
than supervised calibrationless and calibration-based deep-learning methods.
Results show that IMJENSE robustly reconstructs the images acquired at
5$\mathbf{\times}$ and 6$\mathbf{\times}$ accelerations with only 4 or 8
calibration lines in 2D Cartesian acquisitions, corresponding to 22.0% and
19.5% undersampling rates. The high-quality results and scanning specificity
make the proposed method hold the potential for further accelerating the data
acquisition of parallel MRI.
- Abstract(参考訳): 並列イメージングは、磁気共鳴イメージング(MRI)データ取得を加速するための一般的な技術である。
数学的に、並列MRI再構成は、スパースサンプリングされたk空間の測定と所望のMRI画像との逆問題として定式化することができる。
多くの既存の再構成アルゴリズムの成功にもかかわらず、高品質な画像を高度に縮小されたk空間計測から確実に再構築することは依然として課題である。
近年、暗黙的神経表現は、部分的に獲得したデータの内部情報と物理を利用して所望のオブジェクトを生成する強力なパラダイムとして登場している。
本研究では,スキャン特異的暗黙的表現に基づく並列MRI再構成法IMJENSEを提案する。
具体的には,mri画像とコイル感度を,ニューラルネットワークと多項式によってパラメータ化された空間座標の連続関数としてモデル化した。
ネットワークの重みと多項式の係数は、トレーニング用の基底真理データを完全にサンプリングすることなく、疎に得られたk空間の測定から直接学習された。
mri画像とコイル感度の強力な連続表現と共同推定の恩恵を受け、imjenseは従来の画像やk空間領域再構成アルゴリズムよりも優れている。
極めて限られたキャリブレーションデータにより、IMJENSEは教師付きキャリブレーションレスおよびキャリブレーションベースのディープラーニング手法よりも安定である。
その結果、IMJENSEは5$\mathbf{\times}$と6$\mathbf{\times}$で取得した画像を2Dカルテシア買収でわずか4行または8行のキャリブレーション線しか持たない22.0%と19.5%のアンダーサンプリングレートで頑健に再構成した。
高品質の結果と走査特異性により,提案手法は並列mriのデータ取得をさらに促進する可能性を秘めている。
関連論文リスト
- Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
圧縮センシングMRI(Compressed Sensing MRI)は、身体の内部解剖像をアンダーサンプルと圧縮された測定値から再構成する。
ディープニューラルネットワークは、高度にアンサンプされた測定結果から高品質なイメージを再構築する大きな可能性を示している。
CS-MRIにおけるサブサンプリングパターンや画像解像度に頑健な統一モデルを提案する。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - NeRF Solves Undersampled MRI Reconstruction [1.3597551064547502]
本稿では,Neural Radiance Field(NeRF)の概念を利用したMRI技術について述べる。
ラジアルアンダーサンプリングにより、対応する撮像問題をスパースビューレンダリングデータから画像モデリングタスクに再構成することができる。
空間座標から画像強度を出力する多層パーセプトロンは、所定の測定データと所望の画像との間のMR物理駆動レンダリング関係を学習する。
論文 参考訳(メタデータ) (2024-02-20T18:37:42Z) - Robust Depth Linear Error Decomposition with Double Total Variation and
Nuclear Norm for Dynamic MRI Reconstruction [15.444386058967579]
Compressed Sensing (CS) に基づく動的MRI k-space 再構成にはまだ問題がある。
本稿では,高アンダーサンプリングフーリエ変換(DFT)を用いた高低レート動的MRI再構成モデルを提案する。
動的MRIデータに対する実験は、再構成精度と時間複雑性の両方の観点から、優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-23T13:34:59Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
ディープラーニングベースのCMRイメージングアルゴリズムへの関心が高まっている。
ディープラーニング手法は大規模なトレーニングデータセットを必要とする。
このデータセットには300人の被験者のマルチコントラスト、マルチビュー、マルチスライス、マルチコイルCMRイメージングデータが含まれている。
論文 参考訳(メタデータ) (2023-09-19T15:14:42Z) - A scan-specific unsupervised method for parallel MRI reconstruction via
implicit neural representation [9.388253054229155]
暗黙的神経表現(INR)は、物体の内部連続性を学ぶための新しいディープラーニングパラダイムとして登場した。
提案手法は,アーティファクトやノイズのエイリアスを抑えることにより,既存の手法よりも優れる。
良質な結果と走査特異性により,提案手法は並列MRIのデータ取得をさらに加速させる可能性を秘めている。
論文 参考訳(メタデータ) (2022-10-19T10:16:03Z) - Lossy compression of multidimensional medical images using sinusoidal
activation networks: an evaluation study [0.0]
我々は, 周期的活性化機能を持つニューラルネットワークを用いて, 大規模多次元医用画像データセットを確実に圧縮する方法を評価する。
正弦波アクティベーションネットワークのパラメータを用いて,任意の4次元dMRIデータセットを正確に表現する方法を示す。
その結果,提案手法は平均二乗誤差,ピーク信号-雑音比,構造類似度指数において,ReLUとTanhのアクティベーションパーセプトロンアーキテクチャよりも優れていた。
論文 参考訳(メタデータ) (2022-08-02T17:16:33Z) - Learning Optimal K-space Acquisition and Reconstruction using
Physics-Informed Neural Networks [46.751292014516025]
深層ニューラルネットワークは、アンサンプされたk空間データの再構成に応用され、再構成性能が改善されている。
本研究は,k空間サンプリング軌道を正規微分方程式(ODE)問題と考えることによって学習する新しい枠組みを提案する。
実験は、異なるシーケンスで取得された様々な生き残りデータセット(例えば、脳と膝の画像)で実施された。
論文 参考訳(メタデータ) (2022-04-05T20:28:42Z) - Deep MRI Reconstruction with Radial Subsampling [2.7998963147546148]
k空間データにサブサンプリングマスクを適用することは、実際の臨床環境でk空間データの迅速な取得をシミュレートする方法である。
訓練された深層ニューラルネットワークが出力する再構成の質に対して,リチリニア・ラジアル・リフレクション・サブサンプリングを適用させる効果を比較検討し,検討した。
論文 参考訳(メタデータ) (2021-08-17T17:45:51Z) - Multi-Modal MRI Reconstruction with Spatial Alignment Network [51.74078260367654]
臨床実践では、複数のコントラストを持つMRIが1つの研究で取得されるのが普通である。
近年の研究では、異なるコントラストやモダリティの冗長性を考慮すると、k空間にアンダーサンプリングされたMRIの目標モダリティは、完全にサンプリングされたシーケンスの助けを借りてよりよく再構成できることが示されている。
本稿では,空間アライメントネットワークと再構成を統合し,再構成対象のモダリティの質を向上させる。
論文 参考訳(メタデータ) (2021-08-12T08:46:35Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
SISR(Single Image Super-Resolution)は、1つの低解像度入力画像から高解像度(HR)の詳細を得る技術である。
ディープラーニングは、大きなデータセットから事前知識を抽出し、低解像度の画像から優れたMRI画像を生成します。
論文 参考訳(メタデータ) (2021-02-25T14:52:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。