論文の概要: Predictive Maintenance Model Based on Anomaly Detection in Induction
Motors: A Machine Learning Approach Using Real-Time IoT Data
- arxiv url: http://arxiv.org/abs/2310.14949v1
- Date: Sun, 15 Oct 2023 18:43:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-29 15:58:58.346579
- Title: Predictive Maintenance Model Based on Anomaly Detection in Induction
Motors: A Machine Learning Approach Using Real-Time IoT Data
- Title(参考訳): 誘導電動機の異常検出に基づく予測保守モデル:リアルタイムIoTデータを用いた機械学習アプローチ
- Authors: Sergio F. Chevtchenko, Monalisa C. M. dos Santos, Diego M. Vieira,
Ricardo L. Mota, Elisson Rocha, Bruna V. Cruz, Danilo Ara\'ujo, Ermeson
Andrade
- Abstract要約: 本研究では,ポンプ,圧縮機,ファン,その他の産業機械で使用される誘導電動機の異常検出システムについて紹介する。
我々は、計算コストの低い前処理技術と機械学習(ML)モデルの組み合わせを用いる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the support of Internet of Things (IoT) devices, it is possible to
acquire data from degradation phenomena and design data-driven models to
perform anomaly detection in industrial equipment. This approach not only
identifies potential anomalies but can also serve as a first step toward
building predictive maintenance policies. In this work, we demonstrate a novel
anomaly detection system on induction motors used in pumps, compressors, fans,
and other industrial machines. This work evaluates a combination of
pre-processing techniques and machine learning (ML) models with a low
computational cost. We use a combination of pre-processing techniques such as
Fast Fourier Transform (FFT), Wavelet Transform (WT), and binning, which are
well-known approaches for extracting features from raw data. We also aim to
guarantee an optimal balance between multiple conflicting parameters, such as
anomaly detection rate, false positive rate, and inference speed of the
solution. To this end, multiobjective optimization and analysis are performed
on the evaluated models. Pareto-optimal solutions are presented to select which
models have the best results regarding classification metrics and computational
effort. Differently from most works in this field that use publicly available
datasets to validate their models, we propose an end-to-end solution combining
low-cost and readily available IoT sensors. The approach is validated by
acquiring a custom dataset from induction motors. Also, we fuse vibration,
temperature, and noise data from these sensors as the input to the proposed ML
model. Therefore, we aim to propose a methodology general enough to be applied
in different industrial contexts in the future.
- Abstract(参考訳): モノのインターネット(IoT)デバイスのサポートにより、劣化現象からデータを取得し、データ駆動モデルの設計を行い、産業機器で異常検出を行うことができる。
このアプローチは潜在的な異常を識別するだけでなく、予測メンテナンスポリシを構築するための第一歩としても機能する。
本研究では,ポンプ,圧縮機,ファン,その他の産業機械で使用される誘導電動機の新しい異常検出システムを提案する。
この研究は、計算コストの低い前処理技術と機械学習(ML)モデルの組み合わせを評価する。
我々は、Fast Fourier Transform (FFT)、Wavelet Transform (WT)、binningなどの前処理技術を組み合わせて、生データから特徴を抽出する方法としてよく知られている。
また,複数の競合パラメータ(異常検出率,偽陽性率,解の推論速度)の最適バランスを保証することを目的とした。
この目的のために、評価モデル上で多目的最適化と解析を行う。
分類メトリクスと計算労力に関して、どのモデルが最も良い結果が得られるかを選択するために、パレート最適解が提示される。
モデルを検証するために公開データセットを使用するこの分野のほとんどの研究とは異なり、低コストで容易に利用できるIoTセンサーを組み合わせたエンドツーエンドのソリューションを提案する。
この手法は誘導電動機からカスタムデータセットを取得することで検証される。
また,これらのセンサからの振動,温度,騒音データをMLモデルへの入力として融合する。
そこで我々は,将来,異なる産業分野に適用可能な方法論を提案することを目的とする。
関連論文リスト
- An Automated Machine Learning Approach for Detecting Anomalous Peak
Patterns in Time Series Data from a Research Watershed in the Northeastern
United States Critical Zone [3.1747517745997014]
本稿では,米国北東部臨界水域におけるセンサによる時系列データの異常検出を支援する機械学習フレームワークを提案する。
このフレームワークは特に、センサーの故障や自然現象から生じるピークパターンの異常を識別することに焦点を当てている。
論文 参考訳(メタデータ) (2023-09-14T19:07:50Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Anomaly Detection with Ensemble of Encoder and Decoder [2.8199078343161266]
電力網における異常検出は、電力系統に対するサイバー攻撃による異常を検出し、識別することを目的としている。
本稿では,複数のエンコーダとデコーダを用いて正規サンプルのデータ分布をモデル化し,新しい異常検出手法を提案する。
ネットワーク侵入と電力系統データセットの実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-03-11T15:49:29Z) - Neural Enhanced Belief Propagation for Multiobject Tracking [8.228150100178983]
モデルベースとデータ駆動型MOTを組み合わせたBPの変種を紹介する。
NEBP法はモデルベース法と比較して追跡性能が向上する。
nuScenes 自律運転データセット上でのMOTに対するNEBP手法の性能評価を行った。
論文 参考訳(メタデータ) (2022-12-16T08:31:07Z) - Particle-Based Score Estimation for State Space Model Learning in
Autonomous Driving [62.053071723903834]
マルチオブジェクト状態推定はロボットアプリケーションの基本的な問題である。
粒子法を用いて最大形パラメータを学習することを検討する。
自動運転車から収集した実データに本手法を適用した。
論文 参考訳(メタデータ) (2022-12-14T01:21:05Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
我々は6種類の手振りを限定的なサンプル数で分類できるモデルを作成し、より広い聴衆によく一般化する。
信号のランダムなバウンドの使用など、より基本的な手法のセットにアピールするが、これらの手法がオンライン環境で持てる力を示したいと考えている。
論文 参考訳(メタデータ) (2022-06-29T23:22:18Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Real-World Anomaly Detection by using Digital Twin Systems and
Weakly-Supervised Learning [3.0100975935933567]
本稿では, 産業環境における異常検出に対する弱い制御手法を提案する。
これらのアプローチでは、Digital Twinを使用して、機械の通常の動作をシミュレートするトレーニングデータセットを生成する。
提案手法の性能を,実世界のデータセットに応用した様々な最先端の異常検出アルゴリズムと比較した。
論文 参考訳(メタデータ) (2020-11-12T10:15:56Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z) - Data-Driven Permanent Magnet Temperature Estimation in Synchronous
Motors with Supervised Machine Learning [0.0]
自動車用永久磁石同期モータ(PMSM)における磁石温度のモニタリングは難しい課題である。
過熱によりモータの劣化が激しくなり、機械の制御戦略とその設計に高い懸念が生じる。
いくつかの機械学習(ML)モデルは、潜時高ダイナミックな磁力温度分布を予測するタスクにおいて、その推定精度を実証的に評価する。
論文 参考訳(メタデータ) (2020-01-17T11:41:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。