論文の概要: ACTOR: Active Learning with Annotator-specific Classification Heads to
Embrace Human Label Variation
- arxiv url: http://arxiv.org/abs/2310.14979v1
- Date: Mon, 23 Oct 2023 14:26:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 19:38:49.669841
- Title: ACTOR: Active Learning with Annotator-specific Classification Heads to
Embrace Human Label Variation
- Title(参考訳): ACTOR:アノテータ固有の分類頭を用いたアクティブラーニング
- Authors: Xinpeng Wang and Barbara Plank
- Abstract要約: 積極的学習は、アノテーションのコスト削減戦略として、不一致から学ぶという文脈で完全には研究されていない。
アクティブな学習環境では、不確実性推定の観点から、マルチヘッドモデルの方がシングルヘッドモデルよりもはるかに優れていることを示す。
- 参考スコア(独自算出の注目度): 35.10805667891489
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Label aggregation such as majority voting is commonly used to resolve
annotator disagreement in dataset creation. However, this may disregard
minority values and opinions. Recent studies indicate that learning from
individual annotations outperforms learning from aggregated labels, though they
require a considerable amount of annotation. Active learning, as an annotation
cost-saving strategy, has not been fully explored in the context of learning
from disagreement. We show that in the active learning setting, a multi-head
model performs significantly better than a single-head model in terms of
uncertainty estimation. By designing and evaluating acquisition functions with
annotator-specific heads on two datasets, we show that group-level entropy
works generally well on both datasets. Importantly, it achieves performance in
terms of both prediction and uncertainty estimation comparable to full-scale
training from disagreement, while saving up to 70% of the annotation budget.
- Abstract(参考訳): 多数決投票のようなラベル集約は、データセット生成におけるアノテータの不一致を解決するために一般的に使用される。
しかし、これは少数派の価値や意見を無視している可能性がある。
近年の研究では、個々のアノテーションからの学習は、大量のアノテーションを必要とするが、集約ラベルからの学習よりも優れていることが示されている。
アノテーションのコスト削減戦略としてのアクティブラーニングは、不一致から学ぶという文脈では十分に研究されていない。
アクティブ学習環境では,複数頭モデルの方が不確実性推定の点で単頭モデルよりも有意に優れた性能を示す。
2つのデータセットのアノテータ固有のヘッドで獲得関数を設計し評価することで、グループレベルのエントロピーが両方のデータセットで一般的にうまく機能することを示す。
重要な点は、アノテーション予算の最大70%を節約しながら、不一致からのフルスケールトレーニングと同等の予測と不確実性評価の両方でパフォーマンスを実現することだ。
関連論文リスト
- Memory Consistency Guided Divide-and-Conquer Learning for Generalized
Category Discovery [56.172872410834664]
一般カテゴリー発見(GCD)は、半教師付き学習のより現実的で挑戦的な設定に対処することを目的としている。
メモリ一貫性を誘導する分枝・分枝学習フレームワーク(MCDL)を提案する。
本手法は,画像認識の目に見えるクラスと見えないクラスの両方において,最先端のモデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-24T09:39:45Z) - Virtual Category Learning: A Semi-Supervised Learning Method for Dense
Prediction with Extremely Limited Labels [63.16824565919966]
本稿では,ラベルの修正を伴わずに,混乱したサンプルを積極的に使用することを提案する。
仮想カテゴリー(VC)は、モデルの最適化に安全に貢献できるように、各混乱したサンプルに割り当てられる。
私たちの興味深い発見は、密集した視覚タスクにおけるVC学習の利用に注目しています。
論文 参考訳(メタデータ) (2023-12-02T16:23:52Z) - One-bit Supervision for Image Classification: Problem, Solution, and
Beyond [114.95815360508395]
本稿では,ラベルの少ない新しい学習環境である,画像分類のための1ビット監督について述べる。
多段階学習パラダイムを提案し、負ラベル抑圧を半教師付き半教師付き学習アルゴリズムに組み込む。
複数のベンチマークにおいて、提案手法の学習効率は、フルビットの半教師付き監視手法よりも優れている。
論文 参考訳(メタデータ) (2023-11-26T07:39:00Z) - Capturing Perspectives of Crowdsourced Annotators in Subjective Learning Tasks [9.110872603799839]
監督された分類は、人間によって注釈付けされたデータセットに大きく依存する。
毒性分類などの主観的なタスクでは、これらのアノテーションはラッカー間での合意が低くなることが多い。
本研究では、主観的分類タスクのためのtextbfAnnotator Awares for Texts (AART) を提案する。
論文 参考訳(メタデータ) (2023-11-16T10:18:32Z) - XAL: EXplainable Active Learning Makes Classifiers Better Low-resource Learners [71.8257151788923]
低リソーステキスト分類のための新しい説明可能なアクティブラーニングフレームワーク(XAL)を提案する。
XALは分類器に対して、推論を正当化し、合理的な説明ができないラベルのないデータを掘り下げることを推奨している。
6つのデータセットの実験では、XALは9つの強いベースラインに対して一貫した改善を達成している。
論文 参考訳(メタデータ) (2023-10-09T08:07:04Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - Optimizing Active Learning for Low Annotation Budgets [6.753808772846254]
ディープラーニングでは、アクティブな学習は通常、微調整によって連続した深層モデルを更新する反復的なプロセスとして実装される。
移行学習にインスパイアされたアプローチを用いてこの問題に対処する。
本稿では,ALプロセスの反復性を利用してより堅牢なサンプルを抽出する新しい取得関数を提案する。
論文 参考訳(メタデータ) (2022-01-18T18:53:10Z) - Disjoint Contrastive Regression Learning for Multi-Sourced Annotations [10.159313152511919]
大規模データセットはディープラーニングモデルの開発に重要である。
複数のアノテータを使用して、データの異なるサブセットをラベル付けすることができる。
異なるアノテータ間の矛盾とバイアスはモデルトレーニングに有害である。
論文 参考訳(メタデータ) (2021-12-31T12:39:04Z) - Dealing with Disagreements: Looking Beyond the Majority Vote in
Subjective Annotations [6.546195629698355]
主観的タスクに対するマルチアノテータモデルの有効性について検討する。
このアプローチは、トレーニング前にラベルをアグリゲートするよりも、同じまたは良いパフォーマンスが得られることを示す。
提案手法は予測の不確かさを推定する手段も提供し,従来の手法よりもアノテーションの不一致との相関が良好であることを示す。
論文 参考訳(メタデータ) (2021-10-12T03:12:34Z) - Minimax Active Learning [61.729667575374606]
アクティブラーニングは、人間のアノテーションによってラベル付けされる最も代表的なサンプルをクエリすることによって、ラベル効率の高いアルゴリズムを開発することを目指している。
現在のアクティブラーニング技術は、最も不確実なサンプルを選択するためにモデルの不確実性に頼るか、クラスタリングを使うか、最も多様なラベルのないサンプルを選択するために再構築する。
我々は,不確実性と多様性を両立させる半教師付きミニマックスエントロピーに基づく能動学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-12-18T19:03:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。