TableQAKit: A Comprehensive and Practical Toolkit for Table-based
Question Answering
- URL: http://arxiv.org/abs/2310.15075v1
- Date: Mon, 23 Oct 2023 16:33:23 GMT
- Title: TableQAKit: A Comprehensive and Practical Toolkit for Table-based
Question Answering
- Authors: Fangyu Lei, Tongxu Luo, Pengqi Yang, Weihao Liu, Hanwen Liu, Jiahe
Lei, Yiming Huang, Yifan Wei, Shizhu He, Jun Zhao, Kang Liu
- Abstract summary: TableQAKit is the first comprehensive toolkit designed specifically for TableQA.
TableQAKit is open-source with an interactive interface that includes visual operations, and comprehensive data for ease of use.
- Score: 23.412691101965414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Table-based question answering (TableQA) is an important task in natural
language processing, which requires comprehending tables and employing various
reasoning ways to answer the questions. This paper introduces TableQAKit, the
first comprehensive toolkit designed specifically for TableQA. The toolkit
designs a unified platform that includes plentiful TableQA datasets and
integrates popular methods of this task as well as large language models
(LLMs). Users can add their datasets and methods according to the friendly
interface. Also, pleasantly surprised using the modules in this toolkit
achieves new SOTA on some datasets. Finally, \tableqakit{} also provides an
LLM-based TableQA Benchmark for evaluating the role of LLMs in TableQA.
TableQAKit is open-source with an interactive interface that includes visual
operations, and comprehensive data for ease of use.
Related papers
- Table Question Answering for Low-resourced Indic Languages [71.57359949962678]
TableQA is the task of answering questions over tables of structured information, returning individual cells or tables as output.
We introduce a fully automatic large-scale tableQA data generation process for low-resource languages with limited budget.
We incorporate our data generation method on two Indic languages, Bengali and Hindi, which have no tableQA datasets or models.
arXiv Detail & Related papers (2024-10-04T16:26:12Z) - TART: An Open-Source Tool-Augmented Framework for Explainable Table-based Reasoning [61.14586098005874]
Current Large Language Models (LLMs) exhibit limited ability to understand table structures and to apply precise numerical reasoning.
We introduce our Tool-Augmented Reasoning framework for Tables (TART), which integrates LLMs with specialized tools.
TART contains three key components: a table formatter to ensure accurate data representation, a tool maker to develop specific computational tools, and an explanation generator to maintain explainability.
arXiv Detail & Related papers (2024-09-18T06:19:59Z) - TTQA-RS- A break-down prompting approach for Multi-hop Table-Text Question Answering with Reasoning and Summarization [3.531533402602335]
Multi-hop table-text QA requires multiple hops between the table and text.
Our model uses an enhanced retriever for table-text information retrieval.
Our experiments demonstrate the potential of prompt-based approaches.
arXiv Detail & Related papers (2024-06-20T20:55:38Z) - TabPedia: Towards Comprehensive Visual Table Understanding with Concept Synergy [81.76462101465354]
We present a novel large vision-hugging model, TabPedia, equipped with a concept synergy mechanism.
This unified framework allows TabPedia to seamlessly integrate VTU tasks, such as table detection, table structure recognition, table querying, and table question answering.
To better evaluate the VTU task in real-world scenarios, we establish a new and comprehensive table VQA benchmark, ComTQA.
arXiv Detail & Related papers (2024-06-03T13:54:05Z) - KET-QA: A Dataset for Knowledge Enhanced Table Question Answering [63.56707527868466]
We propose to use a knowledge base (KB) as the external knowledge source for TableQA.
Every question requires the integration of information from both the table and the sub-graph to be answered.
We design a retriever-reasoner structured pipeline model to extract pertinent information from the vast knowledge sub-graph.
arXiv Detail & Related papers (2024-05-13T18:26:32Z) - TableVQA-Bench: A Visual Question Answering Benchmark on Multiple Table Domains [4.828743805126944]
This paper establishes a benchmark for table visual question answering, referred to as the TableVQA-Bench.
It is important to note that existing datasets have not incorporated images or QA pairs, which are two crucial components of TableVQA.
arXiv Detail & Related papers (2024-04-30T02:05:18Z) - Large Language Model for Table Processing: A Survey [18.32332372134988]
This survey provides a comprehensive overview of table-related tasks.
It covers traditional tasks like table question answering as well as emerging fields such as spreadsheet manipulation and table data analysis.
arXiv Detail & Related papers (2024-02-04T00:47:53Z) - RobuT: A Systematic Study of Table QA Robustness Against Human-Annotated
Adversarial Perturbations [13.900589860309488]
RobuT builds upon existing Table QA datasets (WTQ, Wiki-Weak, and SQA)
Our results indicate that both state-of-the-art Table QA models and large language models (e.g., GPT-3) with few-shot learning falter in these adversarial sets.
We propose to address this problem by using large language models to generate adversarial examples to enhance training.
arXiv Detail & Related papers (2023-06-25T19:23:21Z) - MultiTabQA: Generating Tabular Answers for Multi-Table Question
Answering [61.48881995121938]
Real-world queries are complex in nature, often over multiple tables in a relational database or web page.
Our model, MultiTabQA, not only answers questions over multiple tables, but also generalizes to generate tabular answers.
arXiv Detail & Related papers (2023-05-22T08:25:15Z) - OmniTab: Pretraining with Natural and Synthetic Data for Few-shot
Table-based Question Answering [106.73213656603453]
We develop a simple table-based QA model with minimal annotation effort.
We propose an omnivorous pretraining approach that consumes both natural and synthetic data.
arXiv Detail & Related papers (2022-07-08T01:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.