論文の概要: Reducing Uncertainty in Sea-level Rise Prediction: A
Spatial-variability-aware Approach
- arxiv url: http://arxiv.org/abs/2310.15179v1
- Date: Thu, 19 Oct 2023 02:13:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-29 15:59:45.026030
- Title: Reducing Uncertainty in Sea-level Rise Prediction: A
Spatial-variability-aware Approach
- Title(参考訳): 海面上昇予測における不確かさの低減 : 空間変動を考慮したアプローチ
- Authors: Subhankar Ghosh, Shuai An, Arun Sharma, Jayant Gupta, Shashi Shekhar,
Aneesh Subramanian
- Abstract要約: 本稿では,空間的変動とモデル間依存性に対処する空間回帰モデルを提案する。
実験結果から,本手法により得られた重みを地域規模でより信頼性の高い予測を行うことができた。
- 参考スコア(独自算出の注目度): 4.32583920500711
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given multi-model ensemble climate projections, the goal is to accurately and
reliably predict future sea-level rise while lowering the uncertainty. This
problem is important because sea-level rise affects millions of people in
coastal communities and beyond due to climate change's impacts on polar ice
sheets and the ocean. This problem is challenging due to spatial variability
and unknowns such as possible tipping points (e.g., collapse of Greenland or
West Antarctic ice-shelf), climate feedback loops (e.g., clouds, permafrost
thawing), future policy decisions, and human actions. Most existing climate
modeling approaches use the same set of weights globally, during either
regression or deep learning to combine different climate projections. Such
approaches are inadequate when different regions require different weighting
schemes for accurate and reliable sea-level rise predictions. This paper
proposes a zonal regression model which addresses spatial variability and model
inter-dependency. Experimental results show more reliable predictions using the
weights learned via this approach on a regional scale.
- Abstract(参考訳): マルチモデルアンサンブルの気候予測を考えると、目標は不確実性を下げつつ、将来の海面上昇を正確にかつ確実に予測することである。
この問題は、海面上昇が海岸地域の何百万人もの人々に影響を及ぼし、気候変動が北極氷床や海に与える影響から重要である。
この問題は、空間的な変動や、チップポイント(グリーンランドや西南極棚氷の崩壊など)、気候フィードバックループ(雲、永久凍土の融解など)、将来の政策決定、人間の行動など、未知の問題によって困難である。
既存の気候モデリングのアプローチのほとんどは、異なる気候予測を組み合わせるために回帰またはディープラーニングのいずれにおいても、世界中の同じ重みのセットを使用する。
このようなアプローチは、正確で信頼性の高い海面上昇予測のための異なる重み付けスキームを必要とする場合、不十分である。
本稿では,空間変動とモデル相互依存を扱うゾナル回帰モデルを提案する。
実験結果は,このアプローチで得られた重みを地域規模で予測することで,より信頼性の高い予測を示す。
関連論文リスト
- Towards Kriging-informed Conditional Diffusion for Regional Sea-Level Data Downscaling [3.8178633709015446]
地球規模の気候モデルや衛星データから粗解射影を推定すると、下降問題は、より詳細な地域気候データを推定することを目的としている。
この問題は、気候変動による重大なリスクに対する効果的な適応、緩和、レジリエンスに社会的に不可欠である。
そこで本稿では, 空間的変動を抑えつつ, 微細な特徴を保ちながら, 空間的変動を捉えるためのKriging-informed Conditional Diffusion Probabilistic Model (Ki-CDPM)を提案する。
論文 参考訳(メタデータ) (2024-10-21T04:24:10Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
我々は、気象時系列から表現指標を予測するために、ディープニューラルネットワークを訓練する。
このアプローチは従来のプロセスベースのモデルよりも優れています。
論文 参考訳(メタデータ) (2024-01-08T15:29:23Z) - CMIP X-MOS: Improving Climate Models with Extreme Model Output
Statistics [40.517778024431244]
自然災害リスクの予測を改善するために, エクストリームモデル出力統計(X-MOS)を導入する。
この手法は, 気象観測所から得られた実測値にCMIPモデル出力を正確にマッピングするために, 深部回帰手法を用いる。
これまでの研究とは対照的に,本研究では,将来の気候パラメータ分布の尾部推定の強化に重点を置いている。
論文 参考訳(メタデータ) (2023-10-24T13:18:53Z) - Multi-variable Hard Physical Constraints for Climate Model Downscaling [17.402215838651557]
地球温暖化モデル(GCM)は、気候変動の進化をシミュレートし、気候変動の影響を評価する主要なツールである。
彼らはしばしば、局所的な現象を再現する際の精度を制限する粗い空間分解能で操作する。
本研究は, この問題の範囲を調査し, 温度適用を通じて多変量制約を導入したフレームワークの基礎を定めている。
論文 参考訳(メタデータ) (2023-08-02T11:42:02Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
気候変動は地下水汚染の長期的な土壌管理問題を悪化させる。
U-Net強化フーリエニューラル汚染(PDENO)を用いた物理インフォームド機械学習サロゲートモデルを開発した。
並行して、気候データと組み合わされた畳み込みオートエンコーダを開発し、アメリカ合衆国全体の気候領域の類似性の次元を減少させる。
論文 参考訳(メタデータ) (2022-11-20T06:46:35Z) - SALT: Sea lice Adaptive Lattice Tracking -- An Unsupervised Approach to
Generate an Improved Ocean Model [72.3183990520267]
シーライス分散と分布を効率的に推定するためのシーライス適応格子追跡手法を提案する。
具体的には、局所的な海洋特性に基づいて、オーシャンモデルの格子グラフにノードをマージすることで、適応的な空間メッシュを生成する。
提案手法は, 変動する気候下での海洋ライス寄生圧マップの予測モデルにより, 積極的養殖管理の促進を約束するものである。
論文 参考訳(メタデータ) (2021-06-24T17:29:42Z) - Dynamical Landscape and Multistability of a Climate Model [64.467612647225]
2つの気候モデルのうちの1つで第3の中間安定状態が見つかる。
我々のアプローチを組み合わせることで、海洋熱輸送とエントロピー生産の負のフィードバックが地球の気候の地形をどのように大きく変えるかを特定することができる。
論文 参考訳(メタデータ) (2020-10-20T15:31:38Z) - Augmented Convolutional LSTMs for Generation of High-Resolution Climate
Change Projections [1.7503398807380832]
統計的ダウンスケーリングのための補助的情報時空間ニューラルアーキテクチャを提案する。
現在の研究では、世界で最も気候的に多様化したインドにおいて、ESMの出力から1.15度 (115 km) から0.25度 (25 km) まで、毎日降水量のダウンスケーリングを行っている。
論文 参考訳(メタデータ) (2020-09-23T17:52:09Z) - Sub-Seasonal Climate Forecasting via Machine Learning: Challenges,
Analysis, and Advances [44.28969320556008]
サブシーズン気候予報(SSF)は、気温や降水量などの主要な気候変数を2週間から2ヶ月の時間スケールで予測することに焦点を当てている。
本稿では,米国本土におけるSSFのための機械学習(ML)アプローチについて検討する。
論文 参考訳(メタデータ) (2020-06-14T18:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。