論文の概要: Seasonal Forecasting of Pan-Arctic Sea Ice with State Space Model
- arxiv url: http://arxiv.org/abs/2505.10665v1
- Date: Thu, 15 May 2025 19:15:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-19 14:36:13.466147
- Title: Seasonal Forecasting of Pan-Arctic Sea Ice with State Space Model
- Title(参考訳): 状態空間モデルによるパン・アルクティック海氷の季節予測
- Authors: Wei Wang, Weidong Yang, Lei Wang, Guihua Wang, Ruibo Lei,
- Abstract要約: 我々は、状態空間モデルに高度な注意機構を統合するディープラーニングアーキテクチャであるIceMambaを紹介する。
IceMambaは、平均RMSEと異常相関係数(ACC)に関する全ての試験モデルより優れており、Ice Edge Error(IIEE)において第2位である。
この革新的なアプローチは、海氷の変動の影響を予見し緩和する能力を高め、気候適応を目指した戦略に不可欠な洞察を与えます。
- 参考スコア(独自算出の注目度): 7.617560936972677
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid decline of Arctic sea ice resulting from anthropogenic climate change poses significant risks to indigenous communities, ecosystems, and the global climate system. This situation emphasizes the immediate necessity for precise seasonal sea ice forecasts. While dynamical models perform well for short-term forecasts, they encounter limitations in long-term forecasts and are computationally intensive. Deep learning models, while more computationally efficient, often have difficulty managing seasonal variations and uncertainties when dealing with complex sea ice dynamics. In this research, we introduce IceMamba, a deep learning architecture that integrates sophisticated attention mechanisms within the state space model. Through comparative analysis of 25 renowned forecast models, including dynamical, statistical, and deep learning approaches, our experimental results indicate that IceMamba delivers excellent seasonal forecasting capabilities for Pan-Arctic sea ice concentration. Specifically, IceMamba outperforms all tested models regarding average RMSE and anomaly correlation coefficient (ACC) and ranks second in Integrated Ice Edge Error (IIEE). This innovative approach enhances our ability to foresee and alleviate the effects of sea ice variability, offering essential insights for strategies aimed at climate adaptation.
- Abstract(参考訳): 人為的気候変動による北極海氷の急激な減少は、先住民社会、生態系、地球規模の気候システムに重大なリスクをもたらす。
この状況は、正確な季節的な海氷予測の即時必要を強調している。
力学モデルは短期予測では良好に機能するが、長期予測では限界に遭遇し、計算集約的である。
深層学習モデルは、より計算効率が良いが、複雑な海氷力学を扱う場合、季節変動や不確実性を管理するのが難しいことが多い。
本研究では,状態空間モデルに高度な注意機構を組み込んだディープラーニングアーキテクチャであるIceMambaを紹介する。
動的,統計的,深層学習を含む25の有名な予測モデルの比較分析により,IceMambaがパン・アルツ海氷濃度に優れた季節予測機能を提供することを示す実験結果を得た。
具体的には、IceMambaは平均RMSEと異常相関係数(ACC)に関する全ての試験モデルより優れており、Ice Edge Error(IIEE)では第2位である。
この革新的なアプローチは、海氷の変動の影響を予見し緩和する能力を高め、気候適応を目指した戦略に不可欠な洞察を与えます。
関連論文リスト
- FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
本研究では,FengWuグローバル気象予報モデルに基づくFengWu-Weather to Subseasonal (FengWu-W2S)を提案する。
我々は,FengWu-W2Sが大気環境を3~6週間先まで確実に予測し,マデン・ジュリア振動 (MJO) や北大西洋振動 (NAO) などの地球表面温度, 降水量, 地磁気高度, 季節内信号の予測能力を向上させることを実証した。
日時から季節時の予測誤差成長に関するアブレーション実験
論文 参考訳(メタデータ) (2024-11-15T13:44:37Z) - SIFM: A Foundation Model for Multi-granularity Arctic Sea Ice Forecasting [19.23074065880929]
本研究では,北極海氷再解析データから自然に得られた時間的多粒度を育成することを提案する。
我々の海氷基礎モデル(SIFM)は、粒内情報と粒間情報の両方を活用するように設計されている。
実験の結果,SIFMは特定の時間的粒度の深層学習モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-10-16T08:52:12Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - Unicorn: U-Net for Sea Ice Forecasting with Convolutional Neural Ordinary Differential Equations [6.4020980835163765]
本稿では,毎週の海氷予測を目的とした,Unicornという新しい深層建築について紹介する。
本モデルでは,アーキテクチャ内に複数の時系列画像を統合することにより,予測性能を向上する。
論文 参考訳(メタデータ) (2024-05-07T01:17:06Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - MT-IceNet -- A Spatial and Multi-Temporal Deep Learning Model for Arctic
Sea Ice Forecasting [0.31410342959104726]
我々は,北極海氷濃度(SIC)予測のためのMT-IceNet - UNetに基づく空間・多時間深層学習モデルを提案する。
提案モデルでは,6ヶ月のリードタイムで予測誤差を最大60%低減し,画素ごとのSIC予測に有望な予測性能を提供する。
論文 参考訳(メタデータ) (2023-08-08T18:18:31Z) - Data-Driven Short-Term Daily Operational Sea Ice Regional Forecasting [52.77986479871782]
地球温暖化は北極を海洋活動に利用し、信頼性の高い海氷予測の需要を生み出した。
本研究では,海氷予測のためのU-Netモデルの性能を,今後10日間にわたって検証した。
この深層学習モデルは、気象データの追加と複数の地域での訓練により、単純なベースラインをかなりの差で上回り、その品質を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-10-17T09:14:35Z) - Sea Ice Forecasting using Attention-based Ensemble LSTM [4.965782577704965]
本研究では,月毎の海氷範囲を最大1カ月前に予測するための,注意に基づくLong Short Term Memory(LSTM)アンサンブル手法を提案する。
日毎および月毎の衛星海氷データと,39年間にわたるERA5再分析から得られた大気および海洋の変動データを用いて,本手法がいくつかのベースラインを上回り,最近提案された深層学習モデルより優れていることを示す。
論文 参考訳(メタデータ) (2021-07-27T21:37:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。