論文の概要: Towards Subject Agnostic Affective Emotion Recognition
- arxiv url: http://arxiv.org/abs/2310.15189v1
- Date: Fri, 20 Oct 2023 23:44:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 22:44:07.024884
- Title: Towards Subject Agnostic Affective Emotion Recognition
- Title(参考訳): 主観的感情認識に向けて
- Authors: Amit Kumar Jaiswal, Haiming Liu, and Prayag Tiwari
- Abstract要約: 脳波信号による脳-コンピュータインタフェース(aBCI)の不安定性
本稿では,メタラーニングに基づくメタドメイン適応手法を提案する。
提案手法は,パブリックなaBICsデータセットの実験において有効であることが示されている。
- 参考スコア(独自算出の注目度): 8.142798657174332
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper focuses on affective emotion recognition, aiming to perform in the
subject-agnostic paradigm based on EEG signals. However, EEG signals manifest
subject instability in subject-agnostic affective Brain-computer interfaces
(aBCIs), which led to the problem of distributional shift. Furthermore, this
problem is alleviated by approaches such as domain generalisation and domain
adaptation. Typically, methods based on domain adaptation confer comparatively
better results than the domain generalisation methods but demand more
computational resources given new subjects. We propose a novel framework,
meta-learning based augmented domain adaptation for subject-agnostic aBCIs. Our
domain adaptation approach is augmented through meta-learning, which consists
of a recurrent neural network, a classifier, and a distributional shift
controller based on a sum-decomposable function. Also, we present that a neural
network explicating a sum-decomposable function can effectively estimate the
divergence between varied domains. The network setting for augmented domain
adaptation follows meta-learning and adversarial learning, where the controller
promptly adapts to new domains employing the target data via a few
self-adaptation steps in the test phase. Our proposed approach is shown to be
effective in experiments on a public aBICs dataset and achieves similar
performance to state-of-the-art domain adaptation methods while avoiding the
use of additional computational resources.
- Abstract(参考訳): 本稿では,脳波信号に基づく主観認識パラダイムの実現を目的とした感情認識に焦点を当てた。
しかし、脳波信号は脳-コンピュータインタフェース(aBCI)において不安定性を示し、分布シフトの問題を引き起こした。
さらに、この問題はドメイン一般化やドメイン適応といったアプローチによって緩和される。
典型的には、ドメイン適応法に基づく手法は、ドメイン一般化法よりも優れた結果を与えるが、新しい対象に対してより多くの計算資源を要求する。
そこで本研究では,新しい枠組みであるメタラーニングに基づく拡張ドメイン適応法を提案する。
我々のドメイン適応アプローチは、繰り返しニューラルネットワーク、分類器、および和分解可能な関数に基づく分布シフト制御器からなるメタラーニングによって拡張される。
また,sum-decomposable関数を探索するニューラルネットワークは,異なる領域間の発散を効果的に推定できることを示す。
拡張ドメイン適応のためのネットワーク設定はメタラーニングおよび逆学習に従っており、コントローラはテストフェーズのいくつかの自己適応ステップを介してターゲットデータを使用する新しいドメインに迅速に適応する。
提案手法は,公開abicsデータセットにおける実験において有効であることが示され,計算資源の追加を回避しつつ,最先端のドメイン適応法と同様の性能を実現する。
関連論文リスト
- PiPa++: Towards Unification of Domain Adaptive Semantic Segmentation via Self-supervised Learning [34.786268652516355]
教師なしドメイン適応セグメンテーションは、それらのドメインのラベル付きデータに頼ることなく、ターゲットドメイン上のモデルのセグメンテーション精度を向上させることを目的としている。
ソースドメイン(ラベル付きデータが利用可能な場所)とターゲットドメイン(ラベルなしデータのみが存在する場所)の特徴表現の整合を図る。
論文 参考訳(メタデータ) (2024-07-24T08:53:29Z) - Domain-Adaptive Learning: Unsupervised Adaptation for Histology Images
with Improved Loss Function Combination [3.004632712148892]
本稿では,H&E染色組織像を対象とした非教師なし領域適応(UDA)のための新しいアプローチを提案する。
本手法では, 組織像に特有の課題に対処するために, 慎重に選択された既存の損失関数とともに, 新たな損失関数を提案する。
提案手法は, 組織像の最先端技術を超え, 精度, 堅牢性, 一般化の面で広く評価されている。
論文 参考訳(メタデータ) (2023-09-29T12:11:16Z) - Taxonomy Adaptive Cross-Domain Adaptation in Medical Imaging via
Optimization Trajectory Distillation [73.83178465971552]
自動医用画像解析の成功は、大規模かつ専門家による注釈付きトレーニングセットに依存する。
非教師なしドメイン適応(UDA)はラベル付きデータ収集の負担を軽減するための有望なアプローチである。
本稿では,2つの技術的課題に新しい視点から対処する統一的手法である最適化トラジェクトリ蒸留を提案する。
論文 参考訳(メタデータ) (2023-07-27T08:58:05Z) - Domain Adaptation from Scratch [24.612696638386623]
我々は、NLPを機密ドメインに拡張するために欠かせない、新しい学習セットである「スクラッチからのドメイン適応」を提示する。
この設定では、トレーニングされたモデルがセンシティブなターゲットドメイン上でうまく動作するように、ソースドメインの集合からのデータを効率的にアノテートすることを目的としている。
本研究は、データ選択やドメイン適応アルゴリズムからアクティブな学習パラダイムまで、この挑戦的な設定に対するいくつかのアプローチを比較した。
論文 参考訳(メタデータ) (2022-09-02T05:55:09Z) - Domain Adaptation Principal Component Analysis: base linear method for
learning with out-of-distribution data [55.41644538483948]
ドメイン適応は現代の機械学習において一般的なパラダイムである。
ドメイン適応主成分分析(DAPCA)という手法を提案する。
DAPCAは、領域適応タスクの解決に有用な線形化データ表現を見つける。
論文 参考訳(メタデータ) (2022-08-28T21:10:56Z) - Heterogeneous Domain Adaptation with Adversarial Neural Representation
Learning: Experiments on E-Commerce and Cybersecurity [7.748670137746999]
Heterogeneous Adversarial Neural Domain Adaptation (HANDA) は異種環境における伝達性を最大化するように設計されている。
画像とテキストの電子商取引ベンチマークを用いて,最先端HDA手法に対する性能評価を3つの実験により行った。
論文 参考訳(メタデータ) (2022-05-05T16:57:36Z) - Semi-Supervised Adversarial Discriminative Domain Adaptation [18.15464889789663]
ドメイン適応は、ラベル付きデータの欠如を処理できる強力なディープニューラルネットワークをトレーニングする潜在的な方法である。
本稿では,SADDA (Semi-Supervised Adversarial Discriminative Domain Adaptation) と呼ばれる改良された対向領域適応法を提案する。
論文 参考訳(メタデータ) (2021-09-27T12:52:50Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
オブジェクト検出のための教師なしドメイン適応は、多くの現実世界のアプリケーションにおいて難しい問題である。
本稿では、中間領域画像生成とドメイン・アドバイザリー・トレーニングを統合した新しい機能アライメント・ネットワーク(AFAN)を提案する。
提案手法は、類似および異種ドメイン適応の双方において、標準ベンチマークにおける最先端の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2021-06-10T05:01:20Z) - Gradient Regularized Contrastive Learning for Continual Domain
Adaptation [86.02012896014095]
本稿では,ラベル付きソースドメインと非ラベル付きターゲットドメインのシーケンスでモデルを提示する連続的なドメイン適応の問題について検討する。
障害を解決するため,グラディエント正規化コントラスト学習(GRCL)を提案する。
Digits、DomainNet、Office-Caltechベンチマークの実験は、我々のアプローチの強力なパフォーマンスを示しています。
論文 参考訳(メタデータ) (2021-03-23T04:10:42Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
部分ドメイン適応(PDA)は、ソースドメインラベル空間がターゲットドメインを置き換えるとき、現実的で困難な問題を扱う。
本稿では,2つの領域にまたがる関連カテゴリを整合させる適応的知識伝達フレームワーク(A$2KT)を提案する。
論文 参考訳(メタデータ) (2020-08-27T00:53:43Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
領域適応法は、2つの領域間の分布がシフトし、それを認識しようとすると仮定する。
グラフ埋め込みに基づく汎用フレームワークを提案する。
提案手法が強力なドメイン適応フレームワークにつながることを示す。
論文 参考訳(メタデータ) (2020-03-09T12:25:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。