Reliable Generation of Privacy-preserving Synthetic Electronic Health Record Time Series via Diffusion Models
- URL: http://arxiv.org/abs/2310.15290v5
- Date: Sat, 23 Nov 2024 07:02:15 GMT
- Title: Reliable Generation of Privacy-preserving Synthetic Electronic Health Record Time Series via Diffusion Models
- Authors: Muhang Tian, Bernie Chen, Allan Guo, Shiyi Jiang, Anru R. Zhang,
- Abstract summary: Electronic Health Records (EHRs) are rich sources of patient-level data, offering valuable resources for medical data analysis.
However, privacy concerns often restrict access to EHRs, hindering downstream analysis.
This study aims to overcome these challenges by generating realistic and privacy-preserving synthetic EHR time series efficiently.
- Score: 4.240899165468488
- License:
- Abstract: Electronic Health Records (EHRs) are rich sources of patient-level data, offering valuable resources for medical data analysis. However, privacy concerns often restrict access to EHRs, hindering downstream analysis. Current EHR de-identification methods are flawed and can lead to potential privacy leakage. Additionally, existing publicly available EHR databases are limited, preventing the advancement of medical research using EHR. This study aims to overcome these challenges by generating realistic and privacy-preserving synthetic electronic health records (EHRs) time series efficiently. We introduce a new method for generating diverse and realistic synthetic EHR time series data using Denoising Diffusion Probabilistic Models (DDPM). We conducted experiments on six databases: Medical Information Mart for Intensive Care III and IV (MIMIC-III/IV), the eICU Collaborative Research Database (eICU), and non-EHR datasets on Stocks and Energy. We compared our proposed method with eight existing methods. Our results demonstrate that our approach significantly outperforms all existing methods in terms of data fidelity while requiring less training effort. Additionally, data generated by our method yields a lower discriminative accuracy compared to other baseline methods, indicating the proposed method can generate data with less privacy risk. The proposed diffusion-model-based method can reliably and efficiently generate synthetic EHR time series, which facilitates the downstream medical data analysis. Our numerical results show the superiority of the proposed method over all other existing methods.
Related papers
- Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - Guided Discrete Diffusion for Electronic Health Record Generation [47.129056768385084]
EHRs are a pivotal data source that enables numerous applications in computational medicine, e.g., disease progression prediction, clinical trial design, and health economics and outcomes research.
Despite wide usability, their sensitive nature raises privacy and confidentially concerns, which limit potential use cases.
To tackle these challenges, we explore the use of generative models to synthesize artificial, yet realistic EHRs.
arXiv Detail & Related papers (2024-04-18T16:50:46Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - EHRDiff: Exploring Realistic EHR Synthesis with Diffusion Models [8.799590232822752]
Privacy concerns have resulted in limited access to high-quality and large-scale EHR data for researchers.
Recent research has delved into synthesizing realistic EHR data through generative modeling techniques.
In this study, we investigate the potential of diffusion models for EHR data synthesis and introduce a novel method, EHRDiff.
arXiv Detail & Related papers (2023-03-10T02:15:58Z) - CEDAR: Communication Efficient Distributed Analysis for Regressions [9.50726756006467]
There are growing interests about distributed learning over multiple EHRs databases without sharing patient-level data.
We propose a novel communication efficient method that aggregates the local optimal estimates, by turning the problem into a missing data problem.
We provide theoretical investigation for the properties of the proposed method for statistical inference as well as differential privacy, and evaluate its performance in simulations and real data analyses.
arXiv Detail & Related papers (2022-07-01T09:53:44Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - Generating Synthetic Mixed-type Longitudinal Electronic Health Records
for Artificial Intelligent Applications [9.374416143268892]
generative adversarial network (GAN) entitled EHR-M-GAN which synthesizes textitmixed-type timeseries EHR data.
We have validated EHR-M-GAN on three publicly-available intensive care unit databases with records from a total of 141,488 unique patients.
arXiv Detail & Related papers (2021-12-22T17:17:34Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
COVID-19 Disease due to the novel coronavirus has caused a shortage of medical resources.
Different data-driven deep learning models have been developed to mitigate the diagnosis of COVID-19.
The data itself is still scarce due to patient privacy concerns.
We propose a simple yet effective algorithm, named textbfFederated textbfL textbfon Medical datasets using textbfPartial Networks (FLOP)
arXiv Detail & Related papers (2021-02-10T01:56:58Z) - EVA: Generating Longitudinal Electronic Health Records Using Conditional
Variational Autoencoders [34.22731849545798]
We propose EHR Variational Autoencoder (EVA) for synthesizing sequences of discrete EHR encounters and encounter features.
We illustrate that EVA can produce realistic sequences, account for individual differences among patients, and can be conditioned on specific disease conditions.
We assess the utility of the methods on large real-world EHR repositories containing over 250, 000 patients.
arXiv Detail & Related papers (2020-12-18T02:37:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.