論文の概要: DeepVox and SAVE-CT: a contrast- and dose-independent 3D deep learning
approach for thoracic aorta segmentation and aneurysm prediction using
computed tomography scans
- arxiv url: http://arxiv.org/abs/2310.15328v1
- Date: Mon, 23 Oct 2023 19:48:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 21:52:27.336950
- Title: DeepVox and SAVE-CT: a contrast- and dose-independent 3D deep learning
approach for thoracic aorta segmentation and aneurysm prediction using
computed tomography scans
- Title(参考訳): DeepVox と SAVE-CT を用いた胸部大動脈分割と動脈瘤予測のための造影・線量非依存型3次元ディープラーニング
- Authors: Matheus del-Valle, Lariza Laura de Oliveira, Henrique Cursino Vieira,
Henrique Min Ho Lee, Lucas Lembran\c{c}a Pinheiro, Maria Fernanda Portugal,
Newton Shydeo Brand\~ao Miyoshi, Nelson Wolosker
- Abstract要約: 胸部大動脈瘤(英: Thoracic aortic aneurysm,TAA)は、大動脈の進行拡大による解離や破裂を引き起こす致命的な疾患である。
その他の指標は、このスクリーニングに役立つが、コントラスト増強や低用量プロトコールを伴わずに取得すれば、臨床評価が困難になる可能性がある。
本研究は, 対照群とTAA患者を含む587種類のCTスキャンを, コントラスト増強の有無にかかわらず低線量および標準線量プロトコールで取得した。
新たなセグメンテーションモデルであるDeepVoxは,開発およびテストセットに対してそれぞれ0.932と0.897のダイススコア係数を示した。
- 参考スコア(独自算出の注目度): 2.3135717943756307
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Thoracic aortic aneurysm (TAA) is a fatal disease which potentially leads to
dissection or rupture through progressive enlargement of the aorta. It is
usually asymptomatic and screening recommendation are limited. The
gold-standard evaluation is performed by computed tomography angiography (CTA)
and radiologists time-consuming assessment. Scans for other indications could
help on this screening, however if acquired without contrast enhancement or
with low dose protocol, it can make the clinical evaluation difficult, besides
increasing the scans quantity for the radiologists. In this study, it was
selected 587 unique CT scans including control and TAA patients, acquired with
low and standard dose protocols, with or without contrast enhancement. A novel
segmentation model, DeepVox, exhibited dice score coefficients of 0.932 and
0.897 for development and test sets, respectively, with faster training speed
in comparison to models reported in the literature. The novel TAA
classification model, SAVE-CT, presented accuracies of 0.930 and 0.922 for
development and test sets, respectively, using only the binary segmentation
mask from DeepVox as input, without hand-engineered features. These two models
together are a potential approach for TAA screening, as they can handle
variable number of slices as input, handling thoracic and thoracoabdominal
sequences, in a fully automated contrast- and dose-independent evaluation. This
may assist to decrease TAA mortality and prioritize the evaluation queue of
patients for radiologists.
- Abstract(参考訳): 胸部大動脈瘤(英: Thoracic aortic aneurysm,TAA)は、大動脈の進行拡大による解離または破裂を引き起こす致命的な疾患である。
通常無症状であり、スクリーニングの推奨は限られている。
金本位評価はct angiography (cta) と放射線科医の時間消費評価により行った。
他の適応のためのスキャンは、このスクリーニングに役立つが、造影剤や低用量プロトコールがなければ、放射線科医のスキャン量を増加させるだけでなく、臨床評価を困難にする可能性がある。
本研究は, 対照群とTAA患者を含む587種類のCTスキャンを, コントラスト増強の有無にかかわらず低線量および標準線量プロトコルで取得した。
新しいセグメンテーションモデルであるdeepvoxは、開発とテストセットにそれぞれ0.932と0.897のサイススコア係数を示し、論文で報告されたモデルと比較してトレーニング速度が速いことを示した。
新規なTAA分類モデルSAVE-CTは,DeepVoxの2値分割マスクのみを入力として,それぞれ0.930と0.922の精度を示した。
これらの2つのモデルは、完全に自動化されたコントラストと線量非依存の評価において、入力として様々な数のスライスを処理し、胸腹部および胸腹部のシーケンスを処理できるため、TAAスクリーニングの潜在的アプローチである。
これは、TAA死亡率の低下と、放射線科医に対する患者の評価キューの優先順位付けに役立つ。
関連論文リスト
- Automated Plaque Detection and Agatston Score Estimation on Non-Contrast
CT Scans: A Multicenter Study [2.4476474544077225]
本研究の目的は,3次元マルチクラスnnU-Netを用いた心臓プラーク自動検出モデルを検証することである。
本研究では,nU-Netセグメンテーションパイプラインを用いて冠状動脈と弁のプラークを検出する方法を示す。
線形補正により、nU-Net深層学習法は胸部非造影CTスキャンでAgatstonスコアを正確に推定することができる。
論文 参考訳(メタデータ) (2024-02-14T20:41:37Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
我々は,10,021個の胸部CTと157個のラベルの大規模データセットを作成した。
解剖学的擬似ラベル抽出のために3次元解剖分類モデルのアンサンブルを適用した。
得られたセグメンテーションモデルはCXRで顕著な性能を示した。
論文 参考訳(メタデータ) (2023-06-06T18:01:08Z) - Automatic Classification of Symmetry of Hemithoraces in Canine and
Feline Radiographs [0.0]
畳み込みニューラルネットワーク(CNN)とアクティブな輪郭に基づくヘミトトラス分割法を提案する。
提案手法のロバスト性を検証するため, 被曝・露出過多に対するソラックスセグメンテーション法を用いて, 適切に露光したラジオグラフィーを合成的に劣化させた。
論文 参考訳(メタデータ) (2023-02-24T22:46:16Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - Building Brains: Subvolume Recombination for Data Augmentation in Large
Vessel Occlusion Detection [56.67577446132946]
この戦略をデータから学ぶためには、標準的なディープラーニングベースのモデルに対して、大規模なトレーニングデータセットが必要である。
そこで本研究では, 異なる患者から血管木セグメントを組換えることで, 人工的なトレーニングサンプルを生成する方法を提案する。
拡張スキームに則って,タスク固有の入力を入力した3D-DenseNetを用いて,半球間の比較を行う。
論文 参考訳(メタデータ) (2022-05-05T10:31:57Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
側方循環は、血流を妥協した領域に酸素を供給する特殊な無酸素流路から生じる。
実際のグレーティングは主に、取得した画像の手動検査によって行われる。
MR灌流データから抽出した放射線学的特徴に基づいて,脳卒中患者の側方血流低下を予測するための深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-10-24T18:58:40Z) - Automated Detection of Coronary Artery Stenosis in X-ray Angiography
using Deep Neural Networks [0.0]
X線冠動脈造影画像からの狭窄検出を部分的に自動化する2段階のディープラーニングフレームワークを提案する。
左/右冠動脈角ビューの分類作業において0.97の精度を達成し、LCAとRCAの関心領域の決定について0.68/0.73のリコールを行った。
論文 参考訳(メタデータ) (2021-03-04T11:45:54Z) - A new approach to extracting coronary arteries and detecting stenosis in
invasive coronary angiograms [9.733630514873376]
我々は,ICAから冠状動脈を抽出する深層学習による自動アルゴリズムの開発を目指している。
本研究では, マルチインプットとマルチスケール(MIMS)のU-Netを2段階の繰り返し訓練戦略として提案した。
実験の結果,提案手法は平均diceスコア 0.8329, 平均感度 0.8281, 平均特異度 0.9979 となり, 73例から294 icasを得た。
論文 参考訳(メタデータ) (2021-01-25T01:48:27Z) - iPhantom: a framework for automated creation of individualized
computational phantoms and its application to CT organ dosimetry [58.943644554192936]
本研究の目的は、患者固有の幻覚やデジタル双眼鏡の自動作成のための新しいフレームワーク、iPhantomを開発し、検証することである。
この枠組みは、個々の患者のCT画像における放射線感受性臓器への放射線線量を評価するために応用される。
iPhantomは、アンカーオルガンのDice similarity Coefficients (DSC) >0.6の精度で全ての臓器の位置を正確に予測し、他のオルガンのDSCは0.3-0.9である。
論文 参考訳(メタデータ) (2020-08-20T01:50:49Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。