論文の概要: Why LLMs Hallucinate, and How to Get (Evidential) Closure: Perceptual,
Intensional, and Extensional Learning for Faithful Natural Language
Generation
- arxiv url: http://arxiv.org/abs/2310.15355v1
- Date: Mon, 23 Oct 2023 20:35:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 21:43:50.413514
- Title: Why LLMs Hallucinate, and How to Get (Evidential) Closure: Perceptual,
Intensional, and Extensional Learning for Faithful Natural Language
Generation
- Title(参考訳): LLMが幻覚し、どのように(証拠的な)クロージャを得るか: 忠実な自然言語生成のための知覚的、内向的、拡張的学習
- Authors: Adam Bouyamourn
- Abstract要約: LLMは、その出力がそれらが証拠を持つ主張と同義であることに制約されないため、幻覚的であることを示す。
次に, LLM を制約して, 明らかな閉包を満たす出力を生成する方法を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We show that LLMs hallucinate because their output is not constrained to be
synonymous with claims for which they have evidence: a condition that we call
evidential closure. Information about the truth or falsity of sentences is not
statistically identified in the standard neural probabilistic language model
setup, and so cannot be conditioned on to generate new strings. We then show
how to constrain LLMs to produce output that does satisfy evidential closure. A
multimodal LLM must learn about the external world (perceptual learning); it
must learn a mapping from strings to states of the world (extensional
learning); and, to achieve fluency when generalizing beyond a body of evidence,
it must learn mappings from strings to their synonyms (intensional learning).
The output of a unimodal LLM must be synonymous with strings in a validated
evidence set. Finally, we present a heuristic procedure, Learn-Babble-Prune,
that yields faithful output from an LLM by rejecting output that is not
synonymous with claims for which the LLM has evidence.
- Abstract(参考訳): LLMは、その出力が証拠を持つクレームと同義であると制約されないため、幻覚的であることを示す。
文の真偽に関する情報は、標準的なニューラル確率言語モデルでは統計的に識別されておらず、新しい文字列を生成するために条件付けできない。
次に, LLM を制約して実測閉包を満たす出力を生成する方法を示す。
マルチモーダル LLM は外部世界(知覚学習)について学ぶ必要があり、弦から世界の状態へのマッピング(拡張学習)を学ばなければならない。
一項 LLM の出力は、検証された証拠集合の文字列と同義でなければならない。
最後に, LLM が証拠を有する主張と同義ではない出力を拒絶することにより LLM から忠実な出力を得るヒューリスティックな手順である Learn-Babble-Prune を提案する。
関連論文リスト
- Connecting the Dots: LLMs can Infer and Verbalize Latent Structure from Disparate Training Data [10.922885479487066]
本研究では, LLMが学習文書に分散した証拠から潜伏情報を推測する, 暗黙の帰納的推論(OOCR)について検討する。
ある実験では、未知の都市と他の既知の都市の間の距離のみからなるコーパスにLSMを微調整する。
OOCRは様々なケースで成功するが、特にLLMが複雑な構造を学ぶ場合、信頼性が低いことも示している。
論文 参考訳(メタデータ) (2024-06-20T17:55:04Z) - A Probabilistic Framework for LLM Hallucination Detection via Belief Tree Propagation [72.93327642336078]
本稿では,幻覚検出のための確率的フレームワークであるBelief Tree Propagation (BTProp)を提案する。
BTPropは、親ステートメントを子ステートメントに分解することで、論理的に関連するステートメントの信念ツリーを導入する。
複数の幻覚検出ベンチマークにおいて,AUROCとAUC-PRにより評価された基準線を3%-9%改善する。
論文 参考訳(メタデータ) (2024-06-11T05:21:37Z) - Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL [78.80673954827773]
大きな言語モデル(LLM)は、言語理解を高め、解釈可能性を改善し、バイアスを減らすために構造化セマンティクスをキャプチャする上で重要な役割を果たす。
セマンティック・ロール・ラベルリング(SRL)を,構造化意味論を抽出するLLMの能力を探るための基本課題として用いることを提案する。
LLMは実際にセマンティック構造をキャプチャすることができ、スケールアップは常にポテンシャルを反映するわけではない。
エラーのかなりの重複は、LLMと訓練されていない人間の両方によって行われ、全てのエラーの約30%を占めることに私たちは驚いています。
論文 参考訳(メタデータ) (2024-05-10T11:44:05Z) - FLAME: Factuality-Aware Alignment for Large Language Models [86.76336610282401]
従来のアライメントプロセスでは,大規模言語モデル(LLM)の事実精度が向上しない。
両段階の幻覚につながる要因は,教師付き微調整(SFT)と強化学習(RL)である。
直接選好最適化により,事実認識型SFTと事実認識型RLで構成された事実認識型アライメントを提案する。
論文 参考訳(メタデータ) (2024-05-02T17:54:54Z) - "Sorry, Come Again?" Prompting -- Enhancing Comprehension and Diminishing Hallucination with [PAUSE]-injected Optimal Paraphrasing [10.20632187568563]
幻覚は現代大言語モデル(LLM)の最も脆弱な側面として現れてきた。
本稿では,LCMの幻覚を避けることを目的としたSCAプロンプトについて紹介する。
本稿では,21のLLMに対するプロンプトの形式性,可読性,具体性について,言語的ニュアンスを詳細に分析する。
与えられたプロンプトの最も理解しやすいパラフレーズを識別する最適なパラフレーズ化手法を提案する。
論文 参考訳(メタデータ) (2024-03-27T19:45:09Z) - Caveat Lector: Large Language Models in Legal Practice [0.0]
大規模な言語モデルへの関心は、多くのユーザーが生成したテキストの品質を評価するための専門知識を欠いているという事実から来ている。
急流と表面的可視性の危険な組み合わせは、生成されたテキストを信頼する誘惑を招き、過信のリスクを生じさせる。
論文 参考訳(メタデータ) (2024-03-14T08:19:41Z) - AlignedCoT: Prompting Large Language Models via Native-Speaking Demonstrations [52.43593893122206]
AlignedCoTは、大規模言語モデルを呼び出すためのコンテキスト内学習技術である。
ゼロショットシナリオでは、一貫した正しいステップワイズプロンプトを達成する。
数学的推論とコモンセンス推論の実験を行う。
論文 参考訳(メタデータ) (2023-11-22T17:24:21Z) - Deceptive Semantic Shortcuts on Reasoning Chains: How Far Can Models Go without Hallucination? [73.454943870226]
本研究はセマンティックアソシエーションによって誘発される特定の種類の幻覚の研究である。
この現象を定量化するために,EureQAと呼ばれる新しい探索手法とベンチマークを提案する。
論文 参考訳(メタデータ) (2023-11-16T09:27:36Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
大規模言語モデル(LLM)は、知識探索タスクにおける高い性能のため、知識ベースとして扱われてきた。
LLMが実際に正しい答えを連続的に生成する能力をどのように評価するか。
LLMの信頼性を直接測定するための新しい指標であるMOdel kNowledge relIabiliTy score (MONITOR)を提案する。
論文 参考訳(メタデータ) (2023-10-15T12:40:30Z) - The Internal State of an LLM Knows When It's Lying [18.886091925252174]
大規模言語モデル(LLM)は、様々なタスクにおいて例外的なパフォーマンスを示している。
彼らの最も顕著な欠点の1つは、自信のあるトーンで不正確または偽の情報を生成することである。
我々は, LLMの内部状態が文の真偽を明らかにするのに有効であることを示す証拠を提供する。
論文 参考訳(メタデータ) (2023-04-26T02:49:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。