論文の概要: Towards contrast-agnostic soft segmentation of the spinal cord
- arxiv url: http://arxiv.org/abs/2310.15402v2
- Date: Tue, 23 Jul 2024 12:12:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 19:40:18.502424
- Title: Towards contrast-agnostic soft segmentation of the spinal cord
- Title(参考訳): 脊髄のコントラスト非依存性ソフトセグメンテーションに向けて
- Authors: Sandrine Bédard, Enamundram Naga Karthik, Charidimos Tsagkas, Emanuele Pravatà, Cristina Granziera, Andrew Smith, Kenneth Arnold Weber II, Julien Cohen-Adad,
- Abstract要約: 本稿では,脊髄のソフトセグメンテーションを生成する深層学習法を提案する。
我々のモデルは、目に見えないデータセット、ベンダー、コントラスト、病理の最先端の手法よりも良く一般化する。
- 参考スコア(独自算出の注目度): 0.27029650498548424
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spinal cord segmentation is clinically relevant and is notably used to compute spinal cord cross-sectional area (CSA) for the diagnosis and monitoring of cord compression or neurodegenerative diseases such as multiple sclerosis. While several semi and automatic methods exist, one key limitation remains: the segmentation depends on the MRI contrast, resulting in different CSA across contrasts. This is partly due to the varying appearance of the boundary between the spinal cord and the cerebrospinal fluid that depends on the sequence and acquisition parameters. This contrast-sensitive CSA adds variability in multi-center studies where protocols can vary, reducing the sensitivity to detect subtle atrophies. Moreover, existing methods enhance the CSA variability by training one model per contrast, while also producing binary masks that do not account for partial volume effects. In this work, we present a deep learning-based method that produces soft segmentations of the spinal cord. Using the Spine Generic Public Database of healthy participants ($\text{n}=267$; $\text{contrasts}=6$), we first generated participant-wise soft ground truth (GT) by averaging the binary segmentations across all 6 contrasts. These soft GT, along with aggressive data augmentation and a regression-based loss function, were used to train a U-Net model for spinal cord segmentation. We evaluated our model against state-of-the-art methods and performed ablation studies involving different loss functions and domain generalization methods. Our results show that using the soft segmentations along with a regression loss function reduces CSA variability ($p < 0.05$, Wilcoxon signed-rank test). The proposed spinal cord segmentation model generalizes better than the state-of-the-art methods amongst unseen datasets, vendors, contrasts, and pathologies (compression, lesions), while accounting for partial volume effects.
- Abstract(参考訳): 脊髄セグメンテーションは臨床的に有用であり、脊髄圧迫や多発性硬化症などの神経変性疾患の診断・モニタリングのために、脊髄横断領域(CSA)の計算に特に有用である。
セグメンテーションはMRIのコントラストに依存し、コントラストによって異なるCSAとなる。
これは、脊髄と髄液の境界が、配列や獲得パラメータによって様々に現れるためである。
このコントラストに敏感なCSAは、プロトコルが変化しうるマルチセンタの研究において可変性を付加し、微妙なアトロフィを検出する感度を低下させる。
さらに、既存の手法は、コントラスト毎に1つのモデルをトレーニングし、また部分体積効果を考慮しないバイナリマスクを生成することにより、CSAの変動性を向上させる。
本研究では,脊髄のソフトセグメンテーションを生成する深層学習に基づく手法を提案する。
健全な参加者のSpine Generic Public Database($\text{n}=267$; $\text{contrasts}=6$)を用いて、まず6つのコントラストのバイナリセグメンテーションを平均化することにより、参加者のソフトグラウンド真実(GT)を生成した。
これらのソフトGTは、攻撃的なデータ拡張と回帰に基づく損失関数と共に、脊髄セグメンテーションのためのU-Netモデルを訓練するために使用された。
我々は、最先端の手法に対してモデルを評価し、異なる損失関数とドメイン一般化法を含むアブレーション研究を行った。
その結果,ソフトセグメンテーションと回帰損失関数はCSAの変動を減少させる(p < 0.05$, Wilcoxon sign-rank test)。
提案した脊髄セグメンテーションモデルは、部分体積効果を考慮しつつ、未確認のデータセット、ベンダー、コントラスト、病理(圧縮、病変)において最先端の方法よりも良く一般化する。
関連論文リスト
- Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
変性性脊椎疾患は高齢者に多い。
骨粗しょう性骨折やその他の変性変形性骨折のタイムリーな診断は、重度の腰痛や障害のリスクを軽減するための前向きな処置を促進する。
本研究では,脊椎動物に対する形状自動エンコーダの使用について検討する。
論文 参考訳(メタデータ) (2023-12-08T18:11:22Z) - How inter-rater variability relates to aleatoric and epistemic
uncertainty: a case study with deep learning-based paraspinal muscle
segmentation [1.9624082208594296]
本研究は, 層間変動が学習アルゴリズムの信頼性に与える影響について検討する。
本研究は,ラベル融合戦略とDLモデルの選択による,ラター間の変動性と不確実性の間の相互作用を明らかにする。
論文 参考訳(メタデータ) (2023-08-14T06:40:20Z) - Diffusion Models for Counterfactual Generation and Anomaly Detection in
Brain Images [59.85702949046042]
病気の画像の健全なバージョンを生成し,それを用いて画素単位の異常マップを得るための弱教師付き手法を提案する。
健常者を対象にした拡散モデルを用いて, サンプリングプロセスの各ステップで拡散拡散確率モデル (DDPM) と拡散拡散確率モデル (DDIM) を組み合わせる。
本手法が正常なサンプルに適用された場合,入力画像は大幅な修正を伴わずに再構成されることを確認した。
論文 参考訳(メタデータ) (2023-08-03T21:56:50Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Contrast Adaptive Tissue Classification by Alternating Segmentation and
Synthesis [0.21111026813272174]
本稿では,訓練データのコントラスト特性を入力画像に適応する交互セグメンテーションと合成ステップを用いたアプローチについて述べる。
このアプローチの顕著な利点は、そのコントラスト特性に適応するために取得プロトコルの1つの例だけが必要であることである。
論文 参考訳(メタデータ) (2021-03-04T00:25:24Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Bone Segmentation in Contrast Enhanced Whole-Body Computed Tomography [2.752817022620644]
本稿では,低線量造影による全身CTスキャンから骨骨髄領域を分離する新しい前処理技術を用いたU-netアーキテクチャについて概説する。
骨とコントラスト染料の差別化には, 適切な前処理が重要であること, 限られたデータで優れた結果が得られることを実証した。
論文 参考訳(メタデータ) (2020-08-12T10:48:38Z) - Implanting Synthetic Lesions for Improving Liver Lesion Segmentation in
CT Exams [0.0]
我々は,CTスライスに現実的な病変を移植し,リッチで制御可能なトレーニングサンプルセットを提供する。
以上の結果から,CTスライスにおける肝病変の分節モデルの性能向上が示唆された。
論文 参考訳(メタデータ) (2020-08-11T13:23:04Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
大規模Vertebrae Challenge(VerSe)は、2019年と2020年に開催されたMICCAI(International Conference on Medical Image Computing and Computer Assisted Intervention)と共同で設立された。
本評価の結果を報告するとともに,脊椎レベル,スキャンレベル,および異なる視野での性能変化について検討した。
論文 参考訳(メタデータ) (2020-01-24T21:09:18Z) - Spinal Metastases Segmentation in MR Imaging using Deep Convolutional
Neural Networks [0.0]
本研究の目的は,深層学習を用いた診断MR画像における脊髄転移の分節化である。
U-Net様アーキテクチャを用いて40例の臨床検査を行った。
専門的な注釈付き病変のセグメンテーションと比較すると、Diceの平均スコアは77.6%、平均感度は78.9%という有望な結果を得た。
論文 参考訳(メタデータ) (2020-01-08T10:59:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。