Linear response of molecular polaritons
- URL: http://arxiv.org/abs/2310.15424v1
- Date: Tue, 24 Oct 2023 00:41:20 GMT
- Title: Linear response of molecular polaritons
- Authors: Joel Yuen-Zhou and Arghadip Koner
- Abstract summary: We show that the collective light-matter strong coupling regime, where $N$ molecular emitters couple to the photon mode of an optical cavity, can be mapped to a quantum impurity model.
We derive simple analytical expressions for linear optical spectra (transmission, reflection, and absorption) where the only molecular input required is the molecular linear susceptibility.
This formalism is applied to a series of illustrative examples showcasing the role of temperature, disorder, vibronic coupling, and optical saturation of the molecular ensemble.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this article, we show that the collective light-matter strong coupling
regime, where $N$ molecular emitters couple to the photon mode of an optical
cavity, can be mapped to a quantum impurity model where the photon is the
impurity that is coupled to a bath of anharmonic transitions. In the
thermodynamic limit where $N\gg1$, we argue that the bath can be replaced with
an effective harmonic bath, leading to a dramatic simplification of the problem
into one of coupled harmonic oscillators. We derive simple analytical
expressions for linear optical spectra (transmission, reflection, and
absorption) where the only molecular input required is the molecular linear
susceptibility. This formalism is applied to a series of illustrative examples
showcasing the role of temperature, disorder, vibronic coupling, and optical
saturation of the molecular ensemble, explaining that it is useful even when
describing an important class of nonlinear optical experiments. For
completeness, we provide a comprehensive Appendix that includes a
self-contained derivation of the relevant spectroscopic observables for
arbitrary anharmonic systems (for both large and small $N$) within the
rotating-wave approximation. While some of the presented results herein have
already been reported in the literature, we provide a unified presentation of
the results as well as new interpretations that connect powerful concepts in
open quantum systems and linear response theory with molecular polaritonics.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - When do molecular polaritons behave like optical filters? [1.9410328648791897]
This perspective outlines several linear optical effects featured by molecular polaritons arising in the collective strong light-matter coupling regime.
We show that, under these circumstances, molecular absorption within a cavity can be understood as the overlap between the polariton transmission and bare molecular absorption spectra.
We highlight the limitations of this treatment when the rates of the single-molecule processes that facilitate dark-state-to-polariton relaxation cannot be neglected.
arXiv Detail & Related papers (2024-08-09T12:48:34Z) - Determining the molecular Huang-Rhys factor via STM induced luminescence [11.925958787012464]
tunneling microscopy induced luminescence (STML) can be used to probe the optical and electronic properties of molecules.
We model the molecule as a two-level system with the vibrational degrees of freedom.
We find that the differential conductance, varying with the bias voltage, exhibits distinct step structure with various vibronic coupling strength.
arXiv Detail & Related papers (2023-11-08T09:17:50Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Vibrational strong coupling in liquid water from cavity molecular
dynamics [0.0]
We show that our simulated cavity spectra can be reproduced to graphical accuracy with a harmonic model.
We conclude that cavity molecular dynamics cannot provide any more insight into the effect of vibrational strong coupling on the absorption spectrum.
arXiv Detail & Related papers (2023-05-04T10:33:14Z) - On the Su-Schrieffer-Heeger model of electron transport: low-temperature
optical conductivity by the Mellin transform [62.997667081978825]
We describe the low-temperature optical conductivity as a function of frequency for a quantum-mechanical system of electrons that hop along a polymer chain.
Our goal is to show vias how the interband conductivity of this system behaves as the smallest energy bandgap tends to close.
arXiv Detail & Related papers (2022-09-26T23:17:39Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Non-Hermitian Hamiltonians for Linear and Nonlinear Optical Response: a
Model for Plexcitons [0.0]
In polaritons, the properties of matter are modified by mixing the molecular transitions with light modes inside a cavity.
Non-Hermitian Hamiltonians have been derived to describe the excited states of molecules coupled to surface plasmons.
arXiv Detail & Related papers (2022-06-27T12:56:20Z) - A theoretical perspective on molecular polaritonics [0.0]
polaritonic phenomena emerging in light-matter interaction regime have proven to be difficult tasks.
The accurate treatment of the vibrational spectrum of the former is key, and simplified quantum models are not valid in many cases.
Loss and dissipation, in the form of absorption or radiation, must also be included in the theoretical description of polaritons.
arXiv Detail & Related papers (2022-01-08T13:29:46Z) - Quantum Floquet engineering with an exactly solvable tight-binding chain
in a cavity [0.0]
We provide an exactly solvable model given by a tight-binding chain coupled to a single cavity mode.
We show that perturbative expansions in the light-matter coupling have to be taken with care and can easily lead to a false superradiant phase.
In addition, we derive analytical expressions for the electronic single-particle spectral function and optical conductivity.
arXiv Detail & Related papers (2021-07-26T14:33:20Z) - Simulation of Condensed-Phase Spectroscopy with Near-term Digital
Quantum Computer [23.13347792805101]
We develop a workflow that combines multi-scale modeling and time-dependent variational quantum algorithm to compute the linear spectroscopy of systems.
We demonstrate the feasibility of our approach by numerically simulating the UV-Vis absorption spectra of organic semiconductors.
Our method can be directly used for other linear condensed-phase spectroscopy and could potentially be extended to nonlinear multi-dimensional spectroscopy.
arXiv Detail & Related papers (2021-06-20T22:30:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.