論文の概要: Grasp Multiple Objects with One Hand
- arxiv url: http://arxiv.org/abs/2310.15599v2
- Date: Thu, 14 Mar 2024 09:53:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-16 02:22:46.595805
- Title: Grasp Multiple Objects with One Hand
- Title(参考訳): 片手で複数のオブジェクトをグラフ化する
- Authors: Yuyang Li, Bo Liu, Yiran Geng, Puhao Li, Yaodong Yang, Yixin Zhu, Tengyu Liu, Siyuan Huang,
- Abstract要約: MultiGraspは、テーブルトップ上のデキスタラスな多指ロボットハンドを用いて、複数の物体をつかむための新しい2段階のアプローチである。
我々の実験は、主に二重物体の把握に焦点を合わせ、44.13%の成功率を達成した。
このフレームワークは、推論速度を犠牲にして2つ以上のオブジェクトをつかむ可能性を実証している。
- 参考スコア(独自算出の注目度): 44.18611368961791
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The intricate kinematics of the human hand enable simultaneous grasping and manipulation of multiple objects, essential for tasks such as object transfer and in-hand manipulation. Despite its significance, the domain of robotic multi-object grasping is relatively unexplored and presents notable challenges in kinematics, dynamics, and object configurations. This paper introduces MultiGrasp, a novel two-stage approach for multi-object grasping using a dexterous multi-fingered robotic hand on a tabletop. The process consists of (i) generating pre-grasp proposals and (ii) executing the grasp and lifting the objects. Our experimental focus is primarily on dual-object grasping, achieving a success rate of 44.13%, highlighting adaptability to new object configurations and tolerance for imprecise grasps. Additionally, the framework demonstrates the potential for grasping more than two objects at the cost of inference speed.
- Abstract(参考訳): 人間の手の複雑なキネマティクスは、複数のオブジェクトの同時把握と操作を可能にし、オブジェクトの移動や手動操作のようなタスクに必須である。
その重要性にもかかわらず、ロボット多目的把握の領域は比較的未探索であり、キネマティクス、ダイナミクス、オブジェクト構成において顕著な課題を提示している。
本稿では,テーブルトップ上に自在な多指ロボットハンドを用いた多目的グリップのための新しい2段階アプローチであるMultiGraspを紹介する。
プロセスは、
一 事前の申告書の作成及び
(二 物をつかんで持ち上げること。)
我々の実験は、主に二重物体把握に焦点をあて、44.13%の成功率を達成し、新しい物体構成への適応性と不正確な把握に対する耐性を強調した。
さらに、このフレームワークは推論速度を犠牲にして2つ以上のオブジェクトをつかむ可能性を実証している。
関連論文リスト
- Decomposed Vector-Quantized Variational Autoencoder for Human Grasp Generation [27.206656215734295]
本稿では,DVQ-VAE(Decomposed Vector-Quantized Variational Autoencoder)を提案する。
部分認識の分解アーキテクチャは、手とオブジェクトの各コンポーネント間のインタラクションをより正確に管理するのに役立つ。
提案モデルでは,4つのベンチマークにおいて,最先端の手法と比較して,品質指標の14.1%の相対的な改善を実現した。
論文 参考訳(メタデータ) (2024-07-19T06:41:16Z) - GraspXL: Generating Grasping Motions for Diverse Objects at Scale [30.104108863264706]
政策学習フレームワークGraspXLにおいて,複数の動作目標に対して手物体の把握動作の発生を統一する。
58個のオブジェクトでトレーニングされたポリシーは、成功率82.2%の500万以上の未確認オブジェクトに対して、多様な把握動作を堅牢に合成することができる。
私たちのフレームワークは、さまざまな手元にデプロイでき、再構築または生成されたオブジェクトで作業できます。
論文 参考訳(メタデータ) (2024-03-28T17:57:27Z) - DiffH2O: Diffusion-Based Synthesis of Hand-Object Interactions from Textual Descriptions [15.417836855005087]
DiffH2Oは,現実的,一方的あるいは一方的な物体相互作用を合成する新しい手法である。
タスクを把握段階とテキストベースのインタラクション段階に分解する。
把握段階では、モデルが手の動きのみを生成するのに対し、手と物の両方のポーズが合成される。
論文 参考訳(メタデータ) (2024-03-26T16:06:42Z) - Twisting Lids Off with Two Hands [82.21668778600414]
シミュレーションで訓練された政策を実世界へ効果的かつ効率的に移行する方法を示す。
具体的には,ボトル状物体の蓋を両手でねじる問題について考察する。
これは、バイマガル・マルチフィンガーハンドでそのような機能を実現する最初のsim-to-real RLシステムである。
論文 参考訳(メタデータ) (2024-03-04T18:59:30Z) - Kinematic-aware Prompting for Generalizable Articulated Object
Manipulation with LLMs [53.66070434419739]
汎用的なオブジェクト操作は、ホームアシストロボットにとって不可欠である。
本稿では,物体のキネマティックな知識を持つ大規模言語モデルに対して,低レベル動作経路を生成するキネマティック・アウェア・プロンプト・フレームワークを提案する。
我々のフレームワークは8つのカテゴリで従来の手法よりも優れており、8つの未確認対象カテゴリに対して強力なゼロショット能力を示している。
論文 参考訳(メタデータ) (2023-11-06T03:26:41Z) - Task-Oriented Human-Object Interactions Generation with Implicit Neural
Representations [61.659439423703155]
TOHO: 命令型ニューラル表現を用いたタスク指向型ヒューマンオブジェクトインタラクション生成
本手法は時間座標のみでパラメータ化される連続運動を生成する。
この研究は、一般的なヒューマン・シーンの相互作用シミュレーションに向けて一歩前進する。
論文 参考訳(メタデータ) (2023-03-23T09:31:56Z) - Efficient and Robust Training of Dense Object Nets for Multi-Object
Robot Manipulation [8.321536457963655]
我々はDense Object Nets(DON)の堅牢で効率的なトレーニングのためのフレームワークを提案する。
本研究は,多目的データを用いた学習に重点を置いている。
実世界のロボットによる把握作業において,提案手法の頑健さと精度を実証する。
論文 参考訳(メタデータ) (2022-06-24T08:24:42Z) - V-MAO: Generative Modeling for Multi-Arm Manipulation of Articulated
Objects [51.79035249464852]
本稿では,音声による物体のマルチアーム操作を学習するためのフレームワークを提案する。
本フレームワークは,各ロボットアームの剛部上の接触点分布を学習する変動生成モデルを含む。
論文 参考訳(メタデータ) (2021-11-07T02:31:09Z) - Simultaneous Multi-View Object Recognition and Grasping in Open-Ended
Domains [0.0]
オープンなオブジェクト認識と把握を同時に行うために,メモリ容量を増強したディープラーニングアーキテクチャを提案する。
シミュレーションと実世界設定の両方において,本手法が未確認のオブジェクトを把握し,現場でのごくわずかな例を用いて,新たなオブジェクトカテゴリを迅速に学習できることを実証する。
論文 参考訳(メタデータ) (2021-06-03T14:12:11Z) - Reactive Human-to-Robot Handovers of Arbitrary Objects [57.845894608577495]
本稿では、未知の物体の人間とロボットのハンドオーバを可能にするビジョンベースシステムを提案する。
提案手法は,クローズドループ運動計画とリアルタイムかつ時間的に一貫性のあるグリップ生成を組み合わせたものである。
提案手法の汎用性,ユーザビリティ,ロバスト性を,26種類の家庭用オブジェクトからなる新しいベンチマークで実証した。
論文 参考訳(メタデータ) (2020-11-17T21:52:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。