Light up that Droid! On the Effectiveness of Static Analysis Features
against App Obfuscation for Android Malware Detection
- URL: http://arxiv.org/abs/2310.15645v1
- Date: Tue, 24 Oct 2023 09:07:23 GMT
- Title: Light up that Droid! On the Effectiveness of Static Analysis Features
against App Obfuscation for Android Malware Detection
- Authors: Borja Molina-Coronado, Antonio Ruggia, Usue Mori, Alessio Merlo,
Alexander Mendiburu, Jose Miguel-Alonso
- Abstract summary: Malware authors have seen obfuscation as the mean to bypass malware detectors based on static analysis features.
In this article we assess the impact of specific obfuscation techniques on common features extracted using static analysis.
We propose a ML malware detector for Android that is robust against obfuscation and outperforms current state-of-the-art detectors.
- Score: 42.50353398405467
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Malware authors have seen obfuscation as the mean to bypass malware detectors
based on static analysis features. For Android, several studies have confirmed
that many anti-malware products are easily evaded with simple program
transformations. As opposed to these works, ML detection proposals for Android
leveraging static analysis features have also been proposed as
obfuscation-resilient. Therefore, it needs to be determined to what extent the
use of a specific obfuscation strategy or tool poses a risk for the validity of
ML malware detectors for Android based on static analysis features. To shed
some light in this regard, in this article we assess the impact of specific
obfuscation techniques on common features extracted using static analysis and
determine whether the changes are significant enough to undermine the
effectiveness of ML malware detectors that rely on these features. The
experimental results suggest that obfuscation techniques affect all static
analysis features to varying degrees across different tools. However, certain
features retain their validity for ML malware detection even in the presence of
obfuscation. Based on these findings, we propose a ML malware detector for
Android that is robust against obfuscation and outperforms current
state-of-the-art detectors.
Related papers
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
We propose MASKDROID, a powerful detector with a strong discriminative ability to identify malware.
We introduce a masking mechanism into the Graph Neural Network based framework, forcing MASKDROID to recover the whole input graph.
This strategy enables the model to understand the malicious semantics and learn more stable representations, enhancing its robustness against adversarial attacks.
arXiv Detail & Related papers (2024-09-29T07:22:47Z) - Unraveling the Key of Machine Learning Solutions for Android Malware
Detection [33.63795751798441]
This paper presents a comprehensive investigation into machine learning-based Android malware detection.
We first survey the literature, categorizing contributions into a taxonomy based on the Android feature engineering and ML modeling pipeline.
Then, we design a general-propose framework for ML-based Android malware detection, re-implement 12 representative approaches from different research communities, and evaluate them from three primary dimensions, i.e. effectiveness, robustness, and efficiency.
arXiv Detail & Related papers (2024-02-05T12:31:19Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - Towards a Fair Comparison and Realistic Design and Evaluation Framework
of Android Malware Detectors [63.75363908696257]
We analyze 10 influential research works on Android malware detection using a common evaluation framework.
We identify five factors that, if not taken into account when creating datasets and designing detectors, significantly affect the trained ML models.
We conclude that the studied ML-based detectors have been evaluated optimistically, which justifies the good published results.
arXiv Detail & Related papers (2022-05-25T08:28:08Z) - Single-Shot Black-Box Adversarial Attacks Against Malware Detectors: A
Causal Language Model Approach [5.2424255020469595]
Adversarial Malware example Generation aims to generate evasive malware variants.
Black-box method has gained more attention than white-box methods.
In this study, we show that a novel DL-based causal language model enables single-shot evasion.
arXiv Detail & Related papers (2021-12-03T05:29:50Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
We propose an explainability-guided and model-agnostic testing framework for robustness of malware detectors.
We then use this framework to test several state-of-the-art malware detectors' abilities to detect manipulated malware.
Our findings shed light on the limitations of current malware detectors, as well as how they can be improved.
arXiv Detail & Related papers (2021-11-19T08:02:38Z) - EvadeDroid: A Practical Evasion Attack on Machine Learning for Black-box
Android Malware Detection [2.2811510666857546]
EvadeDroid is a problem-space adversarial attack designed to effectively evade black-box Android malware detectors in real-world scenarios.
We show that EvadeDroid achieves evasion rates of 80%-95% against DREBIN, Sec-SVM, ADE-MA, MaMaDroid, and Opcode-SVM with only 1-9 queries.
arXiv Detail & Related papers (2021-10-07T09:39:40Z) - ML-based IoT Malware Detection Under Adversarial Settings: A Systematic
Evaluation [9.143713488498513]
This work systematically examines the state-of-the-art malware detection approaches, that utilize various representation and learning techniques.
We show that software mutations with functionality-preserving operations, such as stripping and padding, significantly deteriorate the accuracy of such detectors.
arXiv Detail & Related papers (2021-08-30T16:54:07Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
We show how an attacker can launch a sophisticated and efficient poisoning attack targeting the dataset used to train a malware classifier.
As opposed to other poisoning attacks in the malware detection domain, our attack does not focus on malware families but rather on specific malware instances that contain an implanted trigger.
We propose a comprehensive detection approach that could serve as a future sophisticated defense against this newly discovered severe threat.
arXiv Detail & Related papers (2020-10-30T15:27:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.