Breaking of brightness consistency in optical flow with a lightweight CNN network
- URL: http://arxiv.org/abs/2310.15655v2
- Date: Mon, 27 May 2024 02:41:33 GMT
- Title: Breaking of brightness consistency in optical flow with a lightweight CNN network
- Authors: Yicheng Lin, Shuo Wang, Yunlong Jiang, Bin Han,
- Abstract summary: In this work, a lightweight network is used to extract robust convolutional features and corners with strong invariance.
Modifying the typical brightness consistency of the optical flow method to the convolutional feature consistency yields the light-robust hybrid optical flow method.
A more accurate visual inertial system is constructed by replacing the optical flow method in VINS-Mono.
- Score: 7.601414191389451
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparse optical flow is widely used in various computer vision tasks, however assuming brightness consistency limits its performance in High Dynamic Range (HDR) environments. In this work, a lightweight network is used to extract illumination robust convolutional features and corners with strong invariance. Modifying the typical brightness consistency of the optical flow method to the convolutional feature consistency yields the light-robust hybrid optical flow method. The proposed network runs at 190 FPS on a commercial CPU because it uses only four convolutional layers to extract feature maps and score maps simultaneously. Since the shallow network is difficult to train directly, a deep network is designed to compute the reliability map that helps it. An end-to-end unsupervised training mode is used for both networks. To validate the proposed method, we compare corner repeatability and matching performance with origin optical flow under dynamic illumination. In addition, a more accurate visual inertial system is constructed by replacing the optical flow method in VINS-Mono. In a public HDR dataset, it reduces translation errors by 93\%. The code is publicly available at https://github.com/linyicheng1/LET-NET.
Related papers
- Context-Aware Iteration Policy Network for Efficient Optical Flow
Estimation [19.077966606237897]
We develop a Context-Aware Iteration Policy Network for efficient optical flow estimation.
Our method maintains performance while reducing FLOPs by about 40%/20% for the Sintel/ KITTI datasets.
arXiv Detail & Related papers (2023-12-12T11:27:13Z) - Deep Dynamic Scene Deblurring from Optical Flow [53.625999196063574]
Deblurring can provide visually more pleasant pictures and make photography more convenient.
It is difficult to model the non-uniform blur mathematically.
We develop a convolutional neural network (CNN) to restore the sharp images from the deblurred features.
arXiv Detail & Related papers (2023-01-18T06:37:21Z) - FatNet: High Resolution Kernels for Classification Using Fully
Convolutional Optical Neural Networks [0.3867363075280543]
This paper describes the transformation of a traditional in-silico classification network into an optical fully convolutional neural network.
We present FatNet for the classification of images, which is more compatible with free-space acceleration.
Results show 8.2 times fewer convolution operations at the cost of only 6% lower accuracy compared to the original network.
arXiv Detail & Related papers (2022-10-30T18:31:46Z) - Time-lapse image classification using a diffractive neural network [0.0]
We show for the first time a time-lapse image classification scheme using a diffractive network.
We show a blind testing accuracy of 62.03% on the optical classification of objects from the CIFAR-10 dataset.
This constitutes the highest inference accuracy achieved so far using a single diffractive network.
arXiv Detail & Related papers (2022-08-23T08:16:30Z) - Lightweight Salient Object Detection in Optical Remote Sensing Images
via Feature Correlation [93.80710126516405]
We propose a novel lightweight ORSI-SOD solution, named CorrNet, to address these issues.
By reducing the parameters and computations of each component, CorrNet ends up having only 4.09M parameters and running with 21.09G FLOPs.
Experimental results on two public datasets demonstrate that our lightweight CorrNet achieves competitive or even better performance compared with 26 state-of-the-art methods.
arXiv Detail & Related papers (2022-01-20T08:28:01Z) - Optical-Flow-Reuse-Based Bidirectional Recurrent Network for Space-Time
Video Super-Resolution [52.899234731501075]
Space-time video super-resolution (ST-VSR) simultaneously increases the spatial resolution and frame rate for a given video.
Existing methods typically suffer from difficulties in how to efficiently leverage information from a large range of neighboring frames.
We propose a coarse-to-fine bidirectional recurrent neural network instead of using ConvLSTM to leverage knowledge between adjacent frames.
arXiv Detail & Related papers (2021-10-13T15:21:30Z) - Sensor-Guided Optical Flow [53.295332513139925]
This paper proposes a framework to guide an optical flow network with external cues to achieve superior accuracy on known or unseen domains.
We show how these can be obtained by combining depth measurements from active sensors with geometry and hand-crafted optical flow algorithms.
arXiv Detail & Related papers (2021-09-30T17:59:57Z) - FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation [81.76975488010213]
Dense optical flow estimation plays a key role in many robotic vision tasks.
Current networks often occupy large number of parameters and require heavy computation costs.
Our proposed FastFlowNet works in the well-known coarse-to-fine manner with following innovations.
arXiv Detail & Related papers (2021-03-08T03:09:37Z) - Knowledge Distillation Circumvents Nonlinearity for Optical
Convolutional Neural Networks [4.683612295430957]
We propose a Spectral CNN Linear Counterpart (SCLC) network architecture and develop a Knowledge Distillation (KD) approach to circumvent the need for a nonlinearity.
We show that the KD approach can achieve performance that easily surpasses the standard linear version of a CNN and could approach the performance of the nonlinear network.
arXiv Detail & Related papers (2021-02-26T06:35:34Z) - A Single Stream Network for Robust and Real-time RGB-D Salient Object
Detection [89.88222217065858]
We design a single stream network to use the depth map to guide early fusion and middle fusion between RGB and depth.
This model is 55.5% lighter than the current lightest model and runs at a real-time speed of 32 FPS when processing a $384 times 384$ image.
arXiv Detail & Related papers (2020-07-14T04:40:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.