論文の概要: Graph-based Trajectory Prediction with Cooperative Information
- arxiv url: http://arxiv.org/abs/2310.15692v1
- Date: Tue, 24 Oct 2023 10:02:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-18 14:31:58.840298
- Title: Graph-based Trajectory Prediction with Cooperative Information
- Title(参考訳): 協調情報を用いたグラフベース軌道予測
- Authors: Jan Strohbeck, Sebastian Maschke, Max Mertens, Michael Buchholz
- Abstract要約: 軌道予測のためのグラフベースニューラルネットワークアーキテクチャを提案する。
協調データが存在する場合,ネットワーク性能が大幅に向上することを示す。
また、ネットワークが不正確な協調データに対処できることを示し、実際の自動運転環境で使用できるようにする。
- 参考スコア(独自算出の注目度): 2.9357919636083265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For automated driving, predicting the future trajectories of other road users
in complex traffic situations is a hard problem. Modern neural networks use the
past trajectories of traffic participants as well as map data to gather hints
about the possible driver intention and likely maneuvers. With increasing
connectivity between cars and other traffic actors, cooperative information is
another source of data that can be used as inputs for trajectory prediction
algorithms. Connected actors might transmit their intended path or even
complete planned trajectories to other actors, which simplifies the prediction
problem due to the imposed constraints. In this work, we outline the benefits
of using this source of data for trajectory prediction and propose a
graph-based neural network architecture that can leverage this additional data.
We show that the network performance increases substantially if cooperative
data is present. Also, our proposed training scheme improves the network's
performance even for cases where no cooperative information is available. We
also show that the network can deal with inaccurate cooperative data, which
allows it to be used in real automated driving environments.
- Abstract(参考訳): 自動走行の場合、複雑な交通状況で他の道路利用者の将来の軌道を予測することは困難である。
現代のニューラルネットワークは、過去の交通参加者の軌跡と地図データを使って、運転者の意図とおそらくの操作に関するヒントを集めている。
車と他の交通機関の接続性を高めることで、協調情報は軌道予測アルゴリズムの入力として使用できるデータの別の情報源となる。
接続されたアクターは、意図した経路を送信したり、計画された軌道を他のアクターに送信したりする。
本研究では、このデータソースを軌跡予測に使用する利点を概説し、この追加データを活用可能なグラフベースのニューラルネットワークアーキテクチャを提案する。
協調データが存在するとネットワーク性能が大幅に向上することを示す。
また,協調的な情報がない場合においても,ネットワークの性能を向上させる訓練手法を提案する。
また,ネットワークが不正確な協調データを処理できることを示し,実際の運転環境での利用を可能にした。
関連論文リスト
- Attention-aware Social Graph Transformer Networks for Stochastic Trajectory Prediction [16.55909815712467]
軌道予測は、自律運転やロボット工学など、様々なインテリジェントな技術の基本である。
現在の軌道予測研究は、複雑な社会的相互作用、高ダイナミクス、多モード性といった問題に直面している。
マルチモーダル軌道予測のためのアテンション対応ソーシャルグラフトランスフォーマーネットワークを提案する。
論文 参考訳(メタデータ) (2023-12-26T04:24:01Z) - TAP: A Comprehensive Data Repository for Traffic Accident Prediction in
Road Networks [36.975060335456035]
既存の機械学習アプローチは、独立して交通事故を予測することに重点を置いている。
グラフ構造情報を組み込むには、グラフニューラルネットワーク(GNN)を自然に適用することができる。
GNNを事故予測問題に適用することは、適切なグラフ構造化交通事故データセットがないため、課題に直面します。
論文 参考訳(メタデータ) (2023-04-17T22:18:58Z) - Geometric Deep Learning for Autonomous Driving: Unlocking the Power of
Graph Neural Networks With CommonRoad-Geometric [6.638385593789309]
不均一グラフは、複雑な相互作用効果をモデル化する能力を考えると、トラフィックに対して強力なデータ表現を提供する。
グラフニューラルネットワーク(GNN)が付随するディープラーニングフレームワークとして登場することにより、グラフ構造をさまざまな機械学習アプリケーションに効率的に活用することができる。
提案するPythonフレームワークは,トラフィックシナリオから標準化されたグラフデータセットを抽出する,使いやすく,完全にカスタマイズ可能なデータ処理パイプラインを提供する。
論文 参考訳(メタデータ) (2023-02-02T17:45:02Z) - RSG-Net: Towards Rich Sematic Relationship Prediction for Intelligent
Vehicle in Complex Environments [72.04891523115535]
本稿では,オブジェクトの提案から潜在的意味関係を予測するグラフ畳み込みネットワークRSG-Netを提案する。
実験の結果、このネットワークはロードシーングラフデータセットに基づいてトレーニングされており、エゴ車両周辺のオブジェクト間の潜在的な意味関係を効率的に予測できることがわかった。
論文 参考訳(メタデータ) (2022-07-16T12:40:17Z) - Few-Shot Traffic Prediction with Graph Networks using Locale as
Relational Inductive Biases [7.173242326298134]
多くの都市では、データ収集費用のため、利用可能なトラフィックデータの量は、最低限の要件以下である。
本稿では,グラフネットワーク(GN)に基づく深層学習モデルであるLocaleGnを開発した。
また、LocaleGnから学んだ知識が都市間で伝達可能であることも実証された。
論文 参考訳(メタデータ) (2022-03-08T09:46:50Z) - Decoder Fusion RNN: Context and Interaction Aware Decoders for
Trajectory Prediction [53.473846742702854]
本稿では,動き予測のための反復的,注意に基づくアプローチを提案する。
Decoder Fusion RNN (DF-RNN) は、リカレント動作エンコーダ、エージェント間マルチヘッドアテンションモジュール、コンテキスト認識デコーダで構成される。
提案手法の有効性をArgoverseモーション予測データセットで検証し,その性能を公開ベンチマークで示す。
論文 参考訳(メタデータ) (2021-08-12T15:53:37Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
車両軌道予測タスクは、一般的に知識駆動とデータ駆動の2つの視点から取り組まれている。
本稿では,これら2つの視点を効果的に結合する「現実的残留ブロック」 (RRB) の学習を提案する。
提案手法は,残留範囲を限定し,その不確実性を考慮した現実的な予測を行う。
論文 参考訳(メタデータ) (2021-03-08T16:03:09Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
本稿では,センサデータから直接複雑な都市交通のシーン一貫性のある動き予測を学習することを目的とする。
我々は、シーンを相互作用グラフとしてモデル化し、強力なグラフニューラルネットワークを用いてシーンの分散潜在表現を学習する。
論文 参考訳(メタデータ) (2020-07-23T14:31:25Z) - Probabilistic Crowd GAN: Multimodal Pedestrian Trajectory Prediction
using a Graph Vehicle-Pedestrian Attention Network [12.070251470948772]
本稿では,確率的集団GANが確率的マルチモーダル予測をどうやって生成できるかを示す。
ソーシャルインタラクションをモデル化するグラフ車両歩行者注意ネットワーク(GVAT)も提案する。
本研究では,軌道予測手法の既存の状況の改善を実証し,集団間相互作用の真のマルチモーダル性と不確実性を直接モデル化する方法について述べる。
論文 参考訳(メタデータ) (2020-06-23T11:25:16Z) - VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized
Representation [74.56282712099274]
本稿では,ベクトルで表される個々の道路成分の空間的局所性を利用する階層型グラフニューラルネットワークであるVectorNetを紹介する。
ベクトル化高定義(HD)マップとエージェントトラジェクトリの操作により、ロッキーなレンダリングや計算集約的なConvNetエンコーディングのステップを避けることができる。
我々は、社内行動予測ベンチマークと最近リリースされたArgoverse予測データセットでVectorNetを評価した。
論文 参考訳(メタデータ) (2020-05-08T19:07:03Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
交通予測のための地理・長期時間グラフ畳み込み型ニューラルネットワーク(GLT-GCRNN)を提案する。
本研究では,地理的・長期的時間的パターンを共有する道路間のリッチな相互作用を学習する交通予測のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-23T03:50:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。