Graph-based Trajectory Prediction with Cooperative Information
- URL: http://arxiv.org/abs/2310.15692v1
- Date: Tue, 24 Oct 2023 10:02:48 GMT
- Title: Graph-based Trajectory Prediction with Cooperative Information
- Authors: Jan Strohbeck, Sebastian Maschke, Max Mertens, Michael Buchholz
- Abstract summary: We propose a graph-based neural network architecture for trajectory prediction.
We show that the network performance increases substantially if cooperative data is present.
We also show that the network can deal with inaccurate cooperative data, which allows it to be used in real automated driving environments.
- Score: 2.9357919636083265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For automated driving, predicting the future trajectories of other road users
in complex traffic situations is a hard problem. Modern neural networks use the
past trajectories of traffic participants as well as map data to gather hints
about the possible driver intention and likely maneuvers. With increasing
connectivity between cars and other traffic actors, cooperative information is
another source of data that can be used as inputs for trajectory prediction
algorithms. Connected actors might transmit their intended path or even
complete planned trajectories to other actors, which simplifies the prediction
problem due to the imposed constraints. In this work, we outline the benefits
of using this source of data for trajectory prediction and propose a
graph-based neural network architecture that can leverage this additional data.
We show that the network performance increases substantially if cooperative
data is present. Also, our proposed training scheme improves the network's
performance even for cases where no cooperative information is available. We
also show that the network can deal with inaccurate cooperative data, which
allows it to be used in real automated driving environments.
Related papers
- Attention-aware Social Graph Transformer Networks for Stochastic Trajectory Prediction [16.55909815712467]
Trajectory prediction is fundamental to various intelligent technologies, such as autonomous driving and robotics.
Current trajectory prediction research faces problems of complex social interactions, high dynamics and multi-modality.
We propose Attention-aware Social Graph Transformer Networks for multi-modal trajectory prediction.
arXiv Detail & Related papers (2023-12-26T04:24:01Z) - TAP: A Comprehensive Data Repository for Traffic Accident Prediction in
Road Networks [36.975060335456035]
Existing machine learning approaches tend to focus on predicting traffic accidents in isolation.
To incorporate graph structure information, Graph Neural Networks (GNNs) can be naturally applied.
Applying GNNs to the accident prediction problem faces challenges due to the lack of suitable graph-structured traffic accident datasets.
arXiv Detail & Related papers (2023-04-17T22:18:58Z) - Geometric Deep Learning for Autonomous Driving: Unlocking the Power of
Graph Neural Networks With CommonRoad-Geometric [6.638385593789309]
Heterogeneous graphs offer powerful data representations for traffic, given their ability to model the complex interaction effects.
With the advent of graph neural networks (GNNs) as the accompanying deep learning framework, the graph structure can be efficiently leveraged for various machine learning applications.
Our proposed Python framework offers an easy-to-use and fully customizable data processing pipeline to extract standardized graph datasets from traffic scenarios.
arXiv Detail & Related papers (2023-02-02T17:45:02Z) - RSG-Net: Towards Rich Sematic Relationship Prediction for Intelligent
Vehicle in Complex Environments [72.04891523115535]
We propose RSG-Net (Road Scene Graph Net): a graph convolutional network designed to predict potential semantic relationships from object proposals.
The experimental results indicate that this network, trained on Road Scene Graph dataset, could efficiently predict potential semantic relationships among objects around the ego-vehicle.
arXiv Detail & Related papers (2022-07-16T12:40:17Z) - Few-Shot Traffic Prediction with Graph Networks using Locale as
Relational Inductive Biases [7.173242326298134]
In many cities, the available amount of traffic data is substantially below the minimum requirement due to the data collection expense.
This paper develops a graph network (GN)-based deep learning model LocaleGn that depicts the traffic dynamics using localized data.
It is also demonstrated that the learned knowledge from LocaleGn can be transferred across cities.
arXiv Detail & Related papers (2022-03-08T09:46:50Z) - Decoder Fusion RNN: Context and Interaction Aware Decoders for
Trajectory Prediction [53.473846742702854]
We propose a recurrent, attention-based approach for motion forecasting.
Decoder Fusion RNN (DF-RNN) is composed of a recurrent behavior encoder, an inter-agent multi-headed attention module, and a context-aware decoder.
We demonstrate the efficacy of our method by testing it on the Argoverse motion forecasting dataset and show its state-of-the-art performance on the public benchmark.
arXiv Detail & Related papers (2021-08-12T15:53:37Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
Vehicle trajectory prediction tasks have been commonly tackled from two perspectives: knowledge-driven or data-driven.
In this paper, we propose to learn a "Realistic Residual Block" (RRB) which effectively connects these two perspectives.
Our proposed method outputs realistic predictions by confining the residual range and taking into account its uncertainty.
arXiv Detail & Related papers (2021-03-08T16:03:09Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - Probabilistic Crowd GAN: Multimodal Pedestrian Trajectory Prediction
using a Graph Vehicle-Pedestrian Attention Network [12.070251470948772]
We show how Probabilistic Crowd GAN can output probabilistic multimodal predictions.
We also propose the use of Graph Vehicle-Pedestrian Attention Network (GVAT), which models social interactions.
We demonstrate improvements on the existing state of the art methods for trajectory prediction and illustrate how the true multimodal and uncertain nature of crowd interactions can be directly modelled.
arXiv Detail & Related papers (2020-06-23T11:25:16Z) - VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized
Representation [74.56282712099274]
This paper introduces VectorNet, a hierarchical graph neural network that exploits the spatial locality of individual road components represented by vectors.
By operating on the vectorized high definition (HD) maps and agent trajectories, we avoid lossy rendering and computationally intensive ConvNet encoding steps.
We evaluate VectorNet on our in-house behavior prediction benchmark and the recently released Argoverse forecasting dataset.
arXiv Detail & Related papers (2020-05-08T19:07:03Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.