論文の概要: Ensemble of Task-Specific Language Models for Brain Encoding
- arxiv url: http://arxiv.org/abs/2310.15720v2
- Date: Thu, 9 Nov 2023 07:03:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-10 17:18:52.621637
- Title: Ensemble of Task-Specific Language Models for Brain Encoding
- Title(参考訳): 脳エンコーディングのためのタスク固有言語モデルのアンサンブル
- Authors: Arvindh Arun, Jerrin John, Sanjai Kumaran
- Abstract要約: 本研究では,10の人気のある言語モデルからアンサンブルモデルを作成することにより,このようなエンコーダの性能を向上させる。
アンサンブルメソッドを通じて、すべてのROIで、現在のベースラインを平均10%上回りました。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language models have been shown to be rich enough to encode fMRI activations
of certain Regions of Interest in our Brains. Previous works have explored
transfer learning from representations learned for popular natural language
processing tasks for predicting brain responses. In our work, we improve the
performance of such encoders by creating an ensemble model out of 10 popular
Language Models (2 syntactic and 8 semantic). We beat the current baselines by
10% on average across all ROIs through our ensembling methods.
- Abstract(参考訳): 言語モデルは、脳内の特定の関心領域のfMRIアクティベーションをエンコードするのに十分なほど豊富であることが示されている。
従来の研究は、脳の反応を予測するために人気のある自然言語処理タスクで学んだ表現から伝達学習を探索してきた。
本研究では,10言語モデル(構文2と意味8)からアンサンブルモデルを作成することにより,エンコーダの性能を向上させる。
アンサンブルメソッドを通じて、すべてのROIで、現在のベースラインを平均10%上回りました。
関連論文リスト
- Brain-Like Language Processing via a Shallow Untrained Multihead Attention Network [16.317199232071232]
大規模言語モデル(LLM)は、人間の言語システムの効果的なモデルであることが示されている。
本研究では、未学習モデルの驚くほどのアライメントを駆動する重要なアーキテクチャコンポーネントについて検討する。
論文 参考訳(メタデータ) (2024-06-21T12:54:03Z) - Language Reconstruction with Brain Predictive Coding from fMRI Data [28.217967547268216]
予測符号化の理論は、人間の脳が将来的な単語表現を継続的に予測していることを示唆している。
textscPredFTは、BLEU-1スコアが最大27.8%$の最先端のデコード性能を実現する。
論文 参考訳(メタデータ) (2024-05-19T16:06:02Z) - Code Representation Learning At Scale [75.04686476303436]
2段階の事前学習スキームを用いて,大量のコードデータを用いてコード表現学習を行う。
まず、マスキング言語モデリングにおけるランダム性と、プログラミング言語の構造的側面の両方を活用して、エンコーダを訓練する。
そして、教師なしの方法で強陰性かつ強正に構築された対照的な学習を通して表現を強化する。
論文 参考訳(メタデータ) (2024-02-02T22:19:15Z) - Language Generation from Brain Recordings [68.97414452707103]
本稿では,大言語モデルと意味脳デコーダの容量を利用した生成言語BCIを提案する。
提案モデルでは,視覚的・聴覚的言語刺激のセマンティック内容に整合したコヒーレントな言語系列を生成することができる。
本研究は,直接言語生成におけるBCIの活用の可能性と可能性を示すものである。
論文 参考訳(メタデータ) (2023-11-16T13:37:21Z) - BELT:Bootstrapping Electroencephalography-to-Language Decoding and
Zero-Shot Sentiment Classification by Natural Language Supervision [31.382825932199935]
提案手法は,脳波表現学習をブートストラップする汎用的で効率的なフレームワークである。
意味情報とゼロショットの一般化を理解するための大きなLM能力により、BELTはインターネットスケールのデータセットで訓練された大規模なLMを使用する。
脳から言語への翻訳やゼロショット感情分類を含む2つの特徴ある脳復号タスクについて、最先端の成果を得た。
論文 参考訳(メタデータ) (2023-09-21T13:24:01Z) - FonMTL: Towards Multitask Learning for the Fon Language [1.9370453715137865]
本稿では,Fon言語のための自然言語処理におけるモデル機能向上のための,マルチタスク学習のための最初の爆発的アプローチを提案する。
我々は2つの言語モデルヘッドをエンコーダとして利用して入力の共有表現を構築し,各タスクに対して線形層ブロックを用いて分類する。
Fon の NER および POS タスクの結果は,複数言語で事前訓練された言語モデルに対して,単一タスクで微調整された言語モデルと比較して,競争力(あるいはより優れた)性能を示す。
論文 参考訳(メタデータ) (2023-08-28T03:26:21Z) - From English to More Languages: Parameter-Efficient Model Reprogramming
for Cross-Lingual Speech Recognition [50.93943755401025]
言語間音声認識のためのニューラルモデル再プログラミングに基づく新しいパラメータ効率学習フレームワークを提案する。
我々は、学習可能な事前学習機能強化に焦点を当てた、異なる補助的ニューラルネットワークアーキテクチャを設計する。
提案手法は,既存のASRチューニングアーキテクチャとその拡張性能を自己監督的損失で向上させる。
論文 参考訳(メタデータ) (2023-01-19T02:37:56Z) - Model-based analysis of brain activity reveals the hierarchy of language
in 305 subjects [82.81964713263483]
言語の神経基盤を分解する一般的なアプローチは、個人間で異なる刺激に対する脳の反応を関連付けている。
そこで本研究では,自然刺激に曝露された被験者に対して,モデルに基づくアプローチが等価な結果が得られることを示す。
論文 参考訳(メタデータ) (2021-10-12T15:30:21Z) - Towards Zero-shot Language Modeling [90.80124496312274]
人間の言語学習に誘導的に偏りを持つニューラルモデルを構築した。
類型的に多様な訓練言語のサンプルからこの分布を推測する。
我々は、保留言語に対する遠隔監視として、追加の言語固有の側情報を利用する。
論文 参考訳(メタデータ) (2021-08-06T23:49:18Z) - Low-Dimensional Structure in the Space of Language Representations is
Reflected in Brain Responses [62.197912623223964]
言語モデルと翻訳モデルは,単語の埋め込み,構文的・意味的タスク,将来的な単語埋め込みとの間を円滑に介在する低次元構造を示す。
この表現埋め込みは、各特徴空間が、fMRIを用いて記録された自然言語刺激に対する人間の脳反応にどれだけうまく対応しているかを予測することができる。
これは、埋め込みが脳の自然言語表現構造の一部を捉えていることを示唆している。
論文 参考訳(メタデータ) (2021-06-09T22:59:12Z) - Multi-modal embeddings using multi-task learning for emotion recognition [20.973999078271483]
word2vec、GloVe、ELMoといった一般的な埋め込みは、自然言語タスクで多くの成功を示している。
自然言語理解から、機械学習タスクに音声、視覚、テキスト情報を使用するマルチモーダルアーキテクチャまで、作業を拡張します。
論文 参考訳(メタデータ) (2020-09-10T17:33:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。