論文の概要: FonMTL: Towards Multitask Learning for the Fon Language
- arxiv url: http://arxiv.org/abs/2308.14280v2
- Date: Mon, 11 Sep 2023 22:51:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-13 16:29:53.227090
- Title: FonMTL: Towards Multitask Learning for the Fon Language
- Title(参考訳): fonmtl: fon言語のためのマルチタスク学習に向けて
- Authors: Bonaventure F. P. Dossou, Iffanice Houndayi, Pamely Zantou, Gilles
Hacheme
- Abstract要約: 本稿では,Fon言語のための自然言語処理におけるモデル機能向上のための,マルチタスク学習のための最初の爆発的アプローチを提案する。
我々は2つの言語モデルヘッドをエンコーダとして利用して入力の共有表現を構築し,各タスクに対して線形層ブロックを用いて分類する。
Fon の NER および POS タスクの結果は,複数言語で事前訓練された言語モデルに対して,単一タスクで微調整された言語モデルと比較して,競争力(あるいはより優れた)性能を示す。
- 参考スコア(独自算出の注目度): 1.9370453715137865
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Fon language, spoken by an average 2 million of people, is a truly
low-resourced African language, with a limited online presence, and existing
datasets (just to name but a few). Multitask learning is a learning paradigm
that aims to improve the generalization capacity of a model by sharing
knowledge across different but related tasks: this could be prevalent in very
data-scarce scenarios. In this paper, we present the first explorative approach
to multitask learning, for model capabilities enhancement in Natural Language
Processing for the Fon language. Specifically, we explore the tasks of Named
Entity Recognition (NER) and Part of Speech Tagging (POS) for Fon. We leverage
two language model heads as encoders to build shared representations for the
inputs, and we use linear layers blocks for classification relative to each
task. Our results on the NER and POS tasks for Fon, show competitive (or
better) performances compared to several multilingual pretrained language
models finetuned on single tasks. Additionally, we perform a few ablation
studies to leverage the efficiency of two different loss combination strategies
and find out that the equal loss weighting approach works best in our case. Our
code is open-sourced at https://github.com/bonaventuredossou/multitask_fon.
- Abstract(参考訳): 平均200万人が話すFon言語は、本当に低リソースのアフリカの言語で、オンラインプレゼンスに制限があり、既存のデータセット(名前だけ)がある。
マルチタスク学習(multitask learning)は、異なるが関連するタスク間で知識を共有することによって、モデルの一般化能力を向上させることを目的とした学習パラダイムである。
本稿では,fon言語の自然言語処理におけるモデル能力向上のためのマルチタスク学習への最初の探索的アプローチを提案する。
具体的には、Fon における Named Entity Recognition (NER) と Part of Speech Tagging (POS) のタスクについて検討する。
我々は2つの言語モデルヘッドをエンコーダとして利用して入力の共有表現を構築し,各タスクに対して線形層ブロックを用いて分類する。
fonのnerタスクとposタスクの結果は,単一タスクで微調整された複数の多言語事前学習言語モデルと比較して,競争力(あるいは優れた)パフォーマンスを示している。
さらに,2つの損失組合せ戦略の効率性を活用し,同値損失重み付け手法が最適であることを示すために,いくつかのアブレーション研究を行った。
私たちのコードはhttps://github.com/bonaventuredossou/multitask_fonでオープンソースです。
関連論文リスト
- 2M-NER: Contrastive Learning for Multilingual and Multimodal NER with Language and Modal Fusion [9.038363543966263]
我々は、4つの言語(英語、フランス語、ドイツ語、スペイン語)と2つのモーダル性(テキストと画像)を持つ大規模MMNERデータセットを構築した。
2M-NERと呼ばれる新しいモデルを導入し、コントラスト学習を用いてテキストと画像の表現を整列させ、マルチモーダル協調モジュールを統合する。
比較ベースラインや代表ベースラインと比較して,多言語および多モーダルNERタスクにおいてF1スコアが最も高い。
論文 参考訳(メタデータ) (2024-04-26T02:34:31Z) - Enhancing Multilingual Capabilities of Large Language Models through
Self-Distillation from Resource-Rich Languages [60.162717568496355]
大規模言語モデル(LLM)は多言語コーパスで事前訓練されている。
彼らのパフォーマンスは、いくつかのリソース豊富な言語と比較して、ほとんどの言語でまだ遅れています。
論文 参考訳(メタデータ) (2024-02-19T15:07:32Z) - SkillNet-X: A Multilingual Multitask Model with Sparsely Activated
Skills [51.74947795895178]
本稿では,SkillNet-Xという多言語マルチタスクモデルを提案する。
いくつかの言語固有のスキルとタスク固有のスキルを定義し、それぞれがスキルモジュールに対応する。
我々はSkillNet-Xを4言語で11の自然言語理解データセット上で評価した。
論文 参考訳(メタデータ) (2023-06-28T12:53:30Z) - Efficient Spoken Language Recognition via Multilabel Classification [53.662747523872305]
我々のモデルは,現在の最先端手法よりも桁違いに小さく,高速でありながら,競争力のある結果が得られることを示す。
我々のマルチラベル戦略は、マルチクラス分類よりも非ターゲット言語の方が堅牢である。
論文 参考訳(メタデータ) (2023-06-02T23:04:19Z) - Few-shot Multimodal Multitask Multilingual Learning [0.0]
我々は、事前学習された視覚と言語モデルを適用することで、マルチモーダルマルチタスク(FM3)設定のための数ショット学習を提案する。
FM3は、ビジョンと言語領域における最も顕著なタスクと、それらの交差点を学習する。
論文 参考訳(メタデータ) (2023-02-19T03:48:46Z) - Multitasking Models are Robust to Structural Failure: A Neural Model for
Bilingual Cognitive Reserve [78.3500985535601]
マルチタスク学習とニューロン障害に対する堅牢性との間には,驚くべき関連性がある。
実験の結果,バイリンガル言語モデルは様々なニューロン摂動下で高い性能を維持していることがわかった。
線形表現学習を数学的に解析することにより,このロバスト性を理論的に正当化する。
論文 参考訳(メタデータ) (2022-10-20T22:23:27Z) - Adaptive Activation Network For Low Resource Multilingual Speech
Recognition [30.460501537763736]
ASRモデルの上位層に適応的アクティベーションネットワークを導入する。
また,(1)クロス言語学習,(2)アクティベーション関数をソース言語からターゲット言語に置き換える,(2)多言語学習という2つの手法を提案する。
IARPA Babelデータセットに関する実験により、我々のアプローチは、オフスクラッチトレーニングや従来のボトルネック機能に基づく手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2022-05-28T04:02:59Z) - Are Multilingual Models Effective in Code-Switching? [57.78477547424949]
多言語モデルの有効性を検討し,複合言語設定の能力と適応性について検討する。
この結果から,事前学習した多言語モデルでは,コードスイッチングにおける高品質な表現が必ずしも保証されないことが示唆された。
論文 参考訳(メタデータ) (2021-03-24T16:20:02Z) - Meta-Learning for Effective Multi-task and Multilingual Modelling [23.53779501937046]
タスクと言語間の相互作用を学ぶためのメタラーニング手法を提案する。
我々は、XTREME多言語ベンチマークデータセットから5つの異なるタスクと6つの異なる言語に関する実験を提示する。
論文 参考訳(メタデータ) (2021-01-25T19:30:26Z) - CoSDA-ML: Multi-Lingual Code-Switching Data Augmentation for Zero-Shot
Cross-Lingual NLP [68.2650714613869]
我々は,mBERTを微調整するための多言語コードスイッチングデータを生成するためのデータ拡張フレームワークを提案する。
既存の研究と比較すると,本手法は訓練にバイリンガル文を頼らず,複数の対象言語に対して1つの学習プロセスしか必要としない。
論文 参考訳(メタデータ) (2020-06-11T13:15:59Z) - Zero-Shot Cross-Lingual Transfer with Meta Learning [45.29398184889296]
英語以外の言語ではほとんど、あるいは全くデータがない場合に、複数の言語でのトレーニングモデルの設定を同時に検討する。
メタラーニングを用いて、この挑戦的な設定にアプローチできることが示される。
我々は、標準教師付きゼロショットのクロスランガルと、異なる自然言語理解タスクのための数ショットのクロスランガル設定を用いて実験を行った。
論文 参考訳(メタデータ) (2020-03-05T16:07:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。