AdaptiX -- A Transitional XR Framework for Development and Evaluation of Shared Control Applications in Assistive Robotics
- URL: http://arxiv.org/abs/2310.15887v3
- Date: Fri, 17 May 2024 16:43:15 GMT
- Title: AdaptiX -- A Transitional XR Framework for Development and Evaluation of Shared Control Applications in Assistive Robotics
- Authors: Max Pascher, Felix Ferdinand Goldau, Kirill Kronhardt, Udo Frese, Jens Gerken,
- Abstract summary: This paper presents the AdaptiX framework for developing and evaluating shared control applications in a high-resolution simulation environment.
The initial framework consists of a simulated robotic arm with an example scenario in Virtual Reality (VR), multiple standard control interfaces, and a specialized recording/replay system.
Here, we review the capabilities and limitations of AdaptiX in detail and present three bodies of research based on the framework.
- Score: 5.651597803136407
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the ongoing efforts to empower people with mobility impairments and the increase in technological acceptance by the general public, assistive technologies, such as collaborative robotic arms, are gaining popularity. Yet, their widespread success is limited by usability issues, specifically the disparity between user input and software control along the autonomy continuum. To address this, shared control concepts provide opportunities to combine the targeted increase of user autonomy with a certain level of computer assistance. This paper presents the free and open-source AdaptiX XR framework for developing and evaluating shared control applications in a high-resolution simulation environment. The initial framework consists of a simulated robotic arm with an example scenario in Virtual Reality (VR), multiple standard control interfaces, and a specialized recording/replay system. AdaptiX can easily be extended for specific research needs, allowing Human-Robot Interaction (HRI) researchers to rapidly design and test novel interaction methods, intervention strategies, and multi-modal feedback techniques, without requiring an actual physical robotic arm during the early phases of ideation, prototyping, and evaluation. Also, a Robot Operating System (ROS) integration enables the controlling of a real robotic arm in a PhysicalTwin approach without any simulation-reality gap. Here, we review the capabilities and limitations of AdaptiX in detail and present three bodies of research based on the framework. AdaptiX can be accessed at https://adaptix.robot-research.de.
Related papers
- Generalized Robot Learning Framework [10.03174544844559]
We present a low-cost robot learning framework that is both easily reproducible and transferable to various robots and environments.
We demonstrate that deployable imitation learning can be successfully applied even to industrial-grade robots.
arXiv Detail & Related papers (2024-09-18T15:34:31Z) - Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
Legged robots are physically capable of navigating a diverse variety of environments and overcoming a wide range of obstructions.
Current learning methods often struggle with generalization to the long tail of unexpected situations without heavy human supervision.
We propose a system, VLM-Predictive Control (VLM-PC), combining two key components that we find to be crucial for eliciting on-the-fly, adaptive behavior selection.
arXiv Detail & Related papers (2024-07-02T21:00:30Z) - Socially Pertinent Robots in Gerontological Healthcare [78.35311825198136]
This paper is an attempt to partially answer the question, via two waves of experiments with patients and companions in a day-care gerontological facility in Paris with a full-sized humanoid robot endowed with social and conversational interaction capabilities.
Overall, the users are receptive to this technology, especially when the robot perception and action skills are robust to environmental clutter and flexible to handle a plethora of different interactions.
arXiv Detail & Related papers (2024-04-11T08:43:37Z) - Extended Reality for Enhanced Human-Robot Collaboration: a Human-in-the-Loop Approach [2.336967926255341]
Human-robot collaboration attempts to tackle these challenges by combining the strength and precision of machines with human ingenuity and perceptual understanding.
We propose an implementation framework for an autonomous, machine learning-based manipulator that incorporates human-in-the-loop principles.
The conceptual framework foresees human involvement directly in the robot learning process, resulting in higher adaptability and task generalization.
arXiv Detail & Related papers (2024-03-21T17:50:22Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - Exploring of Discrete and Continuous Input Control for AI-enhanced
Assistive Robotic Arms [5.371337604556312]
Collaborative robots require users to manage multiple Degrees-of-Freedom (DoFs) for tasks like grasping and manipulating objects.
This study explores three different input devices by integrating them into an established XR framework for assistive robotics.
arXiv Detail & Related papers (2024-01-13T16:57:40Z) - LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
We propose a learnable Perception-Action-Communication (LPAC) architecture for the problem.
CNN processes localized perception; a graph neural network (GNN) facilitates robot communications.
Evaluations show that the LPAC models outperform standard decentralized and centralized coverage control algorithms.
arXiv Detail & Related papers (2024-01-10T00:08:00Z) - Modular Customizable ROS-Based Framework for Rapid Development of Social
Robots [3.6622737533847936]
We present the Socially-interactive Robot Software platform (SROS), an open-source framework addressing this need through a modular layered architecture.
Specialized perceptual and interactive skills are implemented as ROS services for reusable deployment on any robot.
We experimentally validated core SROS technologies including computer vision, speech processing, and GPT2 autocomplete speech implemented as plug-and-play ROS services.
arXiv Detail & Related papers (2023-11-27T12:54:20Z) - Physical Interaction and Manipulation of the Environment using Aerial
Robots [1.370633147306388]
The physical interaction of aerial robots with their environment has countless potential applications and is an emerging area with many open challenges.
fully-actuated multirotors have been introduced to tackle some of these challenges.
They provide complete control over position and orientation and eliminate the need for attaching a multi-DoF manipulation arm to the robot.
However, there are many open problems before they can be used in real-world applications.
arXiv Detail & Related papers (2022-07-06T13:15:10Z) - Model Predictive Control for Fluid Human-to-Robot Handovers [50.72520769938633]
Planning motions that take human comfort into account is not a part of the human-robot handover process.
We propose to generate smooth motions via an efficient model-predictive control framework.
We conduct human-to-robot handover experiments on a diverse set of objects with several users.
arXiv Detail & Related papers (2022-03-31T23:08:20Z) - Integrated Benchmarking and Design for Reproducible and Accessible
Evaluation of Robotic Agents [61.36681529571202]
We describe a new concept for reproducible robotics research that integrates development and benchmarking.
One of the central components of this setup is the Duckietown Autolab, a standardized setup that is itself relatively low-cost and reproducible.
We validate the system by analyzing the repeatability of experiments conducted using the infrastructure and show that there is low variance across different robot hardware and across different remote labs.
arXiv Detail & Related papers (2020-09-09T15:31:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.