Mitigate Domain Shift by Primary-Auxiliary Objectives Association for
Generalizing Person ReID
- URL: http://arxiv.org/abs/2310.15913v1
- Date: Tue, 24 Oct 2023 15:15:57 GMT
- Title: Mitigate Domain Shift by Primary-Auxiliary Objectives Association for
Generalizing Person ReID
- Authors: Qilei Li, Shaogang Gong
- Abstract summary: ReID models struggle in learning domain-invariant representation solely through training on an instance classification objective.
We introduce a method that guides model learning of the primary ReID instance classification objective by a concurrent auxiliary learning objective on weakly labeled pedestrian saliency detection.
Our model can be extended with the recent test-time diagram to form the PAOA+, which performs on-the-fly optimization against the auxiliary objective.
- Score: 39.98444065846305
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While deep learning has significantly improved ReID model accuracy under the
independent and identical distribution (IID) assumption, it has also become
clear that such models degrade notably when applied to an unseen novel domain
due to unpredictable/unknown domain shift. Contemporary domain generalization
(DG) ReID models struggle in learning domain-invariant representation solely
through training on an instance classification objective. We consider that a
deep learning model is heavily influenced and therefore biased towards
domain-specific characteristics, e.g., background clutter, scale and viewpoint
variations, limiting the generalizability of the learned model, and hypothesize
that the pedestrians are domain invariant owning they share the same structural
characteristics. To enable the ReID model to be less domain-specific from these
pure pedestrians, we introduce a method that guides model learning of the
primary ReID instance classification objective by a concurrent auxiliary
learning objective on weakly labeled pedestrian saliency detection. To solve
the problem of conflicting optimization criteria in the model parameter space
between the two learning objectives, we introduce a Primary-Auxiliary
Objectives Association (PAOA) mechanism to calibrate the loss gradients of the
auxiliary task towards the primary learning task gradients. Benefiting from the
harmonious multitask learning design, our model can be extended with the recent
test-time diagram to form the PAOA+, which performs on-the-fly optimization
against the auxiliary objective in order to maximize the model's generative
capacity in the test target domain. Experiments demonstrate the superiority of
the proposed PAOA model.
Related papers
- Effort: Efficient Orthogonal Modeling for Generalizable AI-Generated Image Detection [66.16595174895802]
Existing AI-generated image (AIGI) detection methods often suffer from limited generalization performance.
In this paper, we identify a crucial yet previously overlooked asymmetry phenomenon in AIGI detection.
arXiv Detail & Related papers (2024-11-23T19:10:32Z) - Learn from the Learnt: Source-Free Active Domain Adaptation via Contrastive Sampling and Visual Persistence [60.37934652213881]
Domain Adaptation (DA) facilitates knowledge transfer from a source domain to a related target domain.
This paper investigates a practical DA paradigm, namely Source data-Free Active Domain Adaptation (SFADA), where source data becomes inaccessible during adaptation.
We present learn from the learnt (LFTL), a novel paradigm for SFADA to leverage the learnt knowledge from the source pretrained model and actively iterated models without extra overhead.
arXiv Detail & Related papers (2024-07-26T17:51:58Z) - ReCoRe: Regularized Contrastive Representation Learning of World Model [21.29132219042405]
We present a world model that learns invariant features using contrastive unsupervised learning and an intervention-invariant regularizer.
Our method outperforms current state-of-the-art model-based and model-free RL methods and significantly improves on out-of-distribution point navigation tasks evaluated on the iGibson benchmark.
arXiv Detail & Related papers (2023-12-14T15:53:07Z) - Variational Model Perturbation for Source-Free Domain Adaptation [64.98560348412518]
We introduce perturbations into the model parameters by variational Bayesian inference in a probabilistic framework.
We demonstrate the theoretical connection to learning Bayesian neural networks, which proves the generalizability of the perturbed model to target domains.
arXiv Detail & Related papers (2022-10-19T08:41:19Z) - Simplifying Model-based RL: Learning Representations, Latent-space
Models, and Policies with One Objective [142.36200080384145]
We propose a single objective which jointly optimize a latent-space model and policy to achieve high returns while remaining self-consistent.
We demonstrate that the resulting algorithm matches or improves the sample-efficiency of the best prior model-based and model-free RL methods.
arXiv Detail & Related papers (2022-09-18T03:51:58Z) - Deep face recognition with clustering based domain adaptation [57.29464116557734]
We propose a new clustering-based domain adaptation method designed for face recognition task in which the source and target domain do not share any classes.
Our method effectively learns the discriminative target feature by aligning the feature domain globally, and, at the meantime, distinguishing the target clusters locally.
arXiv Detail & Related papers (2022-05-27T12:29:11Z) - Revisiting Deep Subspace Alignment for Unsupervised Domain Adaptation [42.16718847243166]
Unsupervised domain adaptation (UDA) aims to transfer and adapt knowledge from a labeled source domain to an unlabeled target domain.
Traditionally, subspace-based methods form an important class of solutions to this problem.
This paper revisits the use of subspace alignment for UDA and proposes a novel adaptation algorithm that consistently leads to improved generalization.
arXiv Detail & Related papers (2022-01-05T20:16:38Z) - Contextual Classification Using Self-Supervised Auxiliary Models for
Deep Neural Networks [6.585049648605185]
We introduce the notion of Self-Supervised Autogenous Learning (SSAL) models.
A SSAL objective is realized through one or more additional targets that are derived from the original supervised classification task.
We show that SSAL models consistently outperform the state-of-the-art while also providing structured predictions that are more interpretable.
arXiv Detail & Related papers (2021-01-07T18:41:16Z) - Goal-Directed Planning for Habituated Agents by Active Inference Using a
Variational Recurrent Neural Network [5.000272778136268]
This study shows that the predictive coding (PC) and active inference (AIF) frameworks can develop better generalization by learning a prior distribution in a low dimensional latent state space.
In our proposed model, learning is carried out by inferring optimal latent variables as well as synaptic weights for maximizing the evidence lower bound.
Our proposed model was evaluated with both simple and complex robotic tasks in simulation, which demonstrated sufficient generalization in learning with limited training data.
arXiv Detail & Related papers (2020-05-27T06:43:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.