論文の概要: Representation Learning with Large Language Models for Recommendation
- arxiv url: http://arxiv.org/abs/2310.15950v1
- Date: Tue, 24 Oct 2023 15:51:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 18:00:12.861939
- Title: Representation Learning with Large Language Models for Recommendation
- Title(参考訳): 推薦のための大規模言語モデルによる表現学習
- Authors: Xubin Ren, Wei Wei, Lianghao Xia, Lixin Su, Suqi Cheng, Junfeng Wang,
Dawei Yin, Chao Huang
- Abstract要約: 本稿では,大規模言語モデル (LLM) を用いた表現学習によるレコメンデータの強化を目的とした,モデルに依存しないフレームワーク RLMRec を提案する。
RLMRecには補助的なテキスト信号が組み込まれており、LLMが権限を持つユーザ/イテムプロファイリングパラダイムを開発し、LLMの意味空間と協調的関係信号の表現空間を整合させる。
- 参考スコア(独自算出の注目度): 34.46344639742642
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recommender systems have seen significant advancements with the influence of
deep learning and graph neural networks, particularly in capturing complex
user-item relationships. However, these graph-based recommenders heavily depend
on ID-based data, potentially disregarding valuable textual information
associated with users and items, resulting in less informative learned
representations. Moreover, the utilization of implicit feedback data introduces
potential noise and bias, posing challenges for the effectiveness of user
preference learning. While the integration of large language models (LLMs) into
traditional ID-based recommenders has gained attention, challenges such as
scalability issues, limitations in text-only reliance, and prompt input
constraints need to be addressed for effective implementation in practical
recommender systems. To address these challenges, we propose a model-agnostic
framework RLMRec that aims to enhance existing recommenders with LLM-empowered
representation learning. It proposes a recommendation paradigm that integrates
representation learning with LLMs to capture intricate semantic aspects of user
behaviors and preferences. RLMRec incorporates auxiliary textual signals,
develops a user/item profiling paradigm empowered by LLMs, and aligns the
semantic space of LLMs with the representation space of collaborative
relational signals through a cross-view alignment framework. This work further
establish a theoretical foundation demonstrating that incorporating textual
signals through mutual information maximization enhances the quality of
representations. In our evaluation, we integrate RLMRec with state-of-the-art
recommender models, while also analyzing its efficiency and robustness to noise
data. Our implementation codes are available at
https://github.com/HKUDS/RLMRec.
- Abstract(参考訳): レコメンダシステムは、ディープラーニングとグラフニューラルネットワークの影響、特に複雑なユーザとテーマの関係を捉えることで大きな進歩を遂げている。
しかし、これらのグラフベースのレコメンデータは、IDベースのデータに大きく依存しており、ユーザやアイテムに関連する貴重なテキスト情報を無視する可能性がある。
さらに、暗黙的なフィードバックデータの利用は潜在的なノイズとバイアスを導入し、ユーザの嗜好学習の有効性に挑戦する。
大規模言語モデル(LLM)を従来のIDベースのレコメンダに統合することは注目されているが、スケーラビリティの問題、テキストのみ依存の制限、実用的なレコメンダシステムにおける効果的な実装のためには入力制約に対処する必要がある。
これらの課題に対処するため,LLMを用いた表現学習により既存のレコメンデータを強化することを目的としたモデルに依存しないフレームワーク RLMRec を提案する。
ユーザ行動や嗜好の複雑な意味的側面を捉えるために,表現学習とLLMを統合したレコメンデーションパラダイムを提案する。
RLMRecには補助的なテキスト信号が組み込まれており、LLMによって強化されたユーザ/イテムプロファイリングのパラダイムが開発されており、LLMのセマンティック空間と協調的な関係信号の表現空間を、クロスビューアライメントフレームワークを通じて整列する。
この研究はさらに、相互情報最大化によるテキスト信号の統合が表現の質を高めることを実証する理論的基礎を確立する。
本評価では,rlmrecを最先端のレコメンダモデルに統合するとともに,ノイズデータに対する効率性とロバスト性を分析する。
実装コードはhttps://github.com/hkuds/rlmrecで利用可能です。
関連論文リスト
- EAGER-LLM: Enhancing Large Language Models as Recommenders through Exogenous Behavior-Semantic Integration [60.47645731801866]
大規模言語モデル(LLM)は、高度なレコメンデータシステムの基本バックボーンとしてますます活用されている。
LLMは事前訓練された言語意味論であるが、llm-Backboneを通してゼロから協調意味論を学ぶ。
内因性行動情報と内因性行動情報とを非侵襲的に統合するデコーダのみの生成推薦フレームワークであるEAGER-LLMを提案する。
論文 参考訳(メタデータ) (2025-02-20T17:01:57Z) - RALLRec: Improving Retrieval Augmented Large Language Model Recommendation with Representation Learning [24.28601381739682]
大規模言語モデル (LLM) は、ユーザの振る舞いを理解するためのレコメンデーションシステムに統合されている。
既存のRAGメソッドは主にテキストのセマンティクスに依存しており、しばしば最も関連性の高い項目を組み込むことができない。
検索強化大言語モデル推薦(RALLRec)のための表現学習を提案する。
論文 参考訳(メタデータ) (2025-02-10T02:15:12Z) - LLM is Knowledge Graph Reasoner: LLM's Intuition-aware Knowledge Graph Reasoning for Cold-start Sequential Recommendation [47.34949656215159]
大規模言語モデル(LLM)は、Webデータから学習された豊富な知識を持つデータベースとみなすことができる。
LLMの直感認識型知識グラフ推論モデル(LIKR)を提案する。
本モデルは,コールドスタートシーケンシャルレコメンデーションシナリオにおいて,最先端レコメンデーション手法より優れている。
論文 参考訳(メタデータ) (2024-12-17T01:52:15Z) - Real-Time Personalization for LLM-based Recommendation with Customized In-Context Learning [57.28766250993726]
この研究は、モデル更新なしに動的なユーザ関心に適応することを検討する。
既存のLarge Language Model (LLM)ベースのレコメンダは、レコメンデーションチューニング中にコンテキスト内学習能力を失うことが多い。
本稿では,レコメンデーション固有のインコンテキスト学習をリアルタイムレコメンデーションにカスタマイズするRecICLを提案する。
論文 参考訳(メタデータ) (2024-10-30T15:48:36Z) - DaRec: A Disentangled Alignment Framework for Large Language Model and Recommender System [83.34921966305804]
大規模言語モデル (LLM) はレコメンデーションシステムにおいて顕著な性能を示した。
LLMと協調モデルのための新しいプラグ・アンド・プレイアライメントフレームワークを提案する。
我々の手法は既存の最先端アルゴリズムよりも優れている。
論文 参考訳(メタデータ) (2024-08-15T15:56:23Z) - Beyond Inter-Item Relations: Dynamic Adaption for Enhancing LLM-Based Sequential Recommendation [83.87767101732351]
逐次リコメンデータシステム(SRS)は,ユーザの過去のインタラクションシーケンスに基づいて,ユーザが好む次の項目を予測する。
様々なAIアプリケーションにおける大規模言語モデル(LLM)の台頭に触発されて、LLMベースのSRSの研究が急増している。
我々は,大きめの粒度適応の上に構築された逐次レコメンデーションモデルであるDARecを提案する。
論文 参考訳(メタデータ) (2024-08-14T10:03:40Z) - MMREC: LLM Based Multi-Modal Recommender System [2.3113916776957635]
本稿では,Large Language Models(LLM)とディープラーニング技術を活用して,レコメンデータシステムを強化する新しい手法を提案する。
提案フレームワークは,マルチモーダル情報処理を取り入れたレコメンデーションの精度と妥当性を,統一された潜在空間表現を用いて向上することを目的としている。
論文 参考訳(メタデータ) (2024-08-08T04:31:29Z) - Enhancing Collaborative Semantics of Language Model-Driven Recommendations via Graph-Aware Learning [10.907949155931474]
大規模言語モデル(LLM)は、レコメンデーションシステムドメインにおいてますます顕著になっている。
Gal-Recは、グラフニューラルネットワーク(GNN)の意図を模倣することで、ユーザとイテムの協調的意味論の理解を強化する
Gal-Recはコラボレーティブセマンティクスの理解を大幅に強化し、レコメンデーションパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2024-06-19T05:50:15Z) - DRDT: Dynamic Reflection with Divergent Thinking for LLM-based
Sequential Recommendation [53.62727171363384]
進化的思考を伴う動的反射(Dynamic Reflection with Divergent Thinking)という新しい推論原理を導入する。
我々の方法論はダイナミックリフレクション(動的リフレクション)であり、探索、批評、反射を通じて人間の学習をエミュレートするプロセスである。
6つの事前学習 LLM を用いた3つのデータセットに対するアプローチの評価を行った。
論文 参考訳(メタデータ) (2023-12-18T16:41:22Z) - Adapting LLMs for Efficient, Personalized Information Retrieval: Methods
and Implications [0.7832189413179361]
LLM(Large Language Models)は、人間に似たテキストの理解と生成に優れた言語モデルである。
本稿では,言語モデル(LLM)と情報検索(IR)システムの統合戦略について検討する。
論文 参考訳(メタデータ) (2023-11-21T02:01:01Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。