Pix2HDR -- A pixel-wise acquisition and deep learning-based synthesis approach for high-speed HDR videos
- URL: http://arxiv.org/abs/2310.16139v2
- Date: Thu, 25 Apr 2024 16:11:40 GMT
- Title: Pix2HDR -- A pixel-wise acquisition and deep learning-based synthesis approach for high-speed HDR videos
- Authors: Caixin Wang, Jie Zhang, Matthew A. Wilson, Ralph Etienne-Cummings,
- Abstract summary: High-speed high dynamic range () video is challenging because the camera's frame rate restricts its dynamic range.
Existing methods sacrifice speed to acquire multi-exposure frames, yet misaligned motion in these frames can still pose for HDR fusion algorithms.
Our method greatly enhances the vision system's adaptability and performance in dynamic conditions.
- Score: 2.275097126764287
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurately capturing dynamic scenes with wide-ranging motion and light intensity is crucial for many vision applications. However, acquiring high-speed high dynamic range (HDR) video is challenging because the camera's frame rate restricts its dynamic range. Existing methods sacrifice speed to acquire multi-exposure frames. Yet, misaligned motion in these frames can still pose complications for HDR fusion algorithms, resulting in artifacts. Instead of frame-based exposures, we sample the videos using individual pixels at varying exposures and phase offsets. Implemented on a monochrome pixel-wise programmable image sensor, our sampling pattern simultaneously captures fast motion at a high dynamic range. We then transform pixel-wise outputs into an HDR video using end-to-end learned weights from deep neural networks, achieving high spatiotemporal resolution with minimized motion blurring. We demonstrate aliasing-free HDR video acquisition at 1000 FPS, resolving fast motion under low-light conditions and against bright backgrounds - both challenging conditions for conventional cameras. By combining the versatility of pixel-wise sampling patterns with the strength of deep neural networks at decoding complex scenes, our method greatly enhances the vision system's adaptability and performance in dynamic conditions.
Related papers
- Event-based Asynchronous HDR Imaging by Temporal Incident Light Modulation [54.64335350932855]
We propose a Pixel-Asynchronous HDR imaging system, based on key insights into the challenges in HDR imaging.
Our proposed Asyn system integrates the Dynamic Vision Sensors (DVS) with a set of LCD panels.
The LCD panels modulate the irradiance incident upon the DVS by altering their transparency, thereby triggering the pixel-independent event streams.
arXiv Detail & Related papers (2024-03-14T13:45:09Z) - Lightweight High-Speed Photography Built on Coded Exposure and Implicit Neural Representation of Videos [34.152901518593396]
The demand for compact cameras capable of recording high-speed scenes with high resolution is steadily increasing.
However, achieving such capabilities often entails high bandwidth requirements, resulting in bulky, heavy systems unsuitable for low-capacity platforms.
We propose a novel approach to address these challenges by combining the classical coded exposure imaging technique with the emerging implicit neural representation for videos.
arXiv Detail & Related papers (2023-11-22T03:41:13Z) - LAN-HDR: Luminance-based Alignment Network for High Dynamic Range Video
Reconstruction [20.911738532410766]
We propose an end-to-end HDR video composition framework, which aligns LDR frames in feature space and then merges aligned features into an HDR frame.
In training, we adopt a temporal loss, in addition to frame reconstruction losses, to enhance temporal consistency and thus reduce flickering.
arXiv Detail & Related papers (2023-08-22T01:43:00Z) - Joint Video Multi-Frame Interpolation and Deblurring under Unknown
Exposure Time [101.91824315554682]
In this work, we aim ambitiously for a more realistic and challenging task - joint video multi-frame and deblurring under unknown exposure time.
We first adopt a variant of supervised contrastive learning to construct an exposure-aware representation from input blurred frames.
We then build our video reconstruction network upon the exposure and motion representation by progressive exposure-adaptive convolution and motion refinement.
arXiv Detail & Related papers (2023-03-27T09:43:42Z) - DynIBaR: Neural Dynamic Image-Based Rendering [79.44655794967741]
We address the problem of synthesizing novel views from a monocular video depicting a complex dynamic scene.
We adopt a volumetric image-based rendering framework that synthesizes new viewpoints by aggregating features from nearby views.
We demonstrate significant improvements over state-of-the-art methods on dynamic scene datasets.
arXiv Detail & Related papers (2022-11-20T20:57:02Z) - Deep Progressive Feature Aggregation Network for High Dynamic Range
Imaging [24.94466716276423]
We propose a deep progressive feature aggregation network for improving HDR imaging quality in dynamic scenes.
Our method implicitly samples high-correspondence features and aggregates them in a coarse-to-fine manner for alignment.
Experiments show that our proposed method can achieve state-of-the-art performance under different scenes.
arXiv Detail & Related papers (2022-08-04T04:37:35Z) - High Dynamic Range and Super-Resolution from Raw Image Bursts [52.341483902624006]
This paper introduces the first approach to reconstruct high-resolution, high-dynamic range color images from raw photographic bursts captured by a handheld camera with exposure bracketing.
The proposed algorithm is fast, with low memory requirements compared to state-of-the-art learning-based approaches to image restoration.
Experiments demonstrate its excellent performance with super-resolution factors of up to $times 4$ on real photographs taken in the wild with hand-held cameras.
arXiv Detail & Related papers (2022-07-29T13:31:28Z) - Towards Interpretable Video Super-Resolution via Alternating
Optimization [115.85296325037565]
We study a practical space-time video super-resolution (STVSR) problem which aims at generating a high-framerate high-resolution sharp video from a low-framerate blurry video.
We propose an interpretable STVSR framework by leveraging both model-based and learning-based methods.
arXiv Detail & Related papers (2022-07-21T21:34:05Z) - Self-supervised HDR Imaging from Motion and Exposure Cues [14.57046548797279]
We propose a novel self-supervised approach for learnable HDR estimation that alleviates the need for HDR ground-truth labels.
Experimental results show that the HDR models trained using our proposed self-supervision approach achieve performance competitive with those trained under full supervision.
arXiv Detail & Related papers (2022-03-23T10:22:03Z) - Exposure Trajectory Recovery from Motion Blur [90.75092808213371]
Motion blur in dynamic scenes is an important yet challenging research topic.
In this paper, we define exposure trajectories, which represent the motion information contained in a blurry image.
A novel motion offset estimation framework is proposed to model pixel-wise displacements of the latent sharp image.
arXiv Detail & Related papers (2020-10-06T05:23:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.