Coherent control of a superconducting qubit using light
- URL: http://arxiv.org/abs/2310.16155v3
- Date: Fri, 03 Jan 2025 21:04:07 GMT
- Title: Coherent control of a superconducting qubit using light
- Authors: Hana K. Warner, Jeffrey Holzgrafe, Beatriz Yankelevich, David Barton, Stefano Poletto, C. J. Xin, Neil Sinclair, Di Zhu, Eyob Sete, Brandon Langley, Emma Batson, Marco Colangelo, Amirhassan Shams-Ansari, Graham Joe, Karl K. Berggren, Liang Jiang, Matthew Reagor, Marko Loncar,
- Abstract summary: Superconducting microwave qubits operating in cryogenic environments have emerged as promising candidates for quantum processor nodes.
We demonstrate coherent optical control of a superconducting qubit.
- Score: 1.9834013025499746
- License:
- Abstract: Quantum communications technologies require a network of quantum processors connected with low loss and low noise communication channels capable of distributing entangled states. Superconducting microwave qubits operating in cryogenic environments have emerged as promising candidates for quantum processor nodes. However, scaling these systems is challenging because they require bulky microwave components with high thermal loads that can quickly overwhelm the cooling power of a dilution refrigerator. Telecommunication frequency optical signals, meanwhile, can be fabricated in significantly smaller form factors while avoiding challenges due to high signal loss, noise sensitivity, and thermal loads due to their high carrier frequency and propagation in silica optical fibers. Transduction of information via coherent links between optical and microwave frequencies is therefore critical to leverage the advantages of optics for superconducting microwave qubits, while also enabling superconducting processors to be linked with low-loss optical interconnects. Here, we demonstrate coherent optical control of a superconducting qubit. We achieve this by developing a microwave-optical quantum transducer that operates with up to 1.18% conversion efficiency with low added microwave noise, and demonstrate optically-driven Rabi oscillations in a superconducting qubit.
Related papers
- Light-Induced Microwave Noise in Superconducting Microwave-Optical
Transducers [1.2874569408514918]
We study light-induced microwave noise in an integrated electro-optical transducer harnessing Pockels effect of thin film lithium niobate.
Our results gain insights into the mechanisms and corresponding mitigation strategies for light-induced microwave noise in superconducting microwave-optical transducers.
arXiv Detail & Related papers (2023-11-14T20:25:34Z) - Terahertz-Mediated Microwave-to-Optical Transduction [0.0]
Transduction of quantum signals between the microwave and the optical ranges will unlock powerful hybrid quantum systems.
Most microwave-to-optical quantum transducers suffer from thermal noise due to pump absorption.
We analyze the coupled thermal and wave dynamics in electro-optic transducers that use a two-step scheme based on an intermediate frequency state in the THz range.
arXiv Detail & Related papers (2023-07-07T19:31:39Z) - An integrated microwave-to-optics interface for scalable quantum
computing [47.187609203210705]
We present a new design for an integrated transducer based on a superconducting resonator coupled to a silicon photonic cavity.
We experimentally demonstrate its unique performance and potential for simultaneously realizing all of the above conditions.
Our device couples directly to a 50-Ohm transmission line and can easily be scaled to a large number of transducers on a single chip.
arXiv Detail & Related papers (2022-10-27T18:05:01Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Low-loss high-impedance circuit for quantum transduction between optical
and microwave photons [0.0]
Quantum transducers between microwave and optical photons are essential for long-distance quantum networks based on superconducting qubits.
An optically active self-assembled quantum dot molecule (QDM) is an attractive platform for the implementation of a quantum transducer.
We present a design of a QD-high impedance resonator device with a low microwave loss and an expected large single-microwave photon coupling strength of 100s of MHz.
arXiv Detail & Related papers (2021-12-09T18:31:13Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Cavity piezo-mechanics for superconducting-nanophotonic quantum
interface [6.047107581901681]
We report an integrated superconducting cavity piezo-optomechanical platform where 10-GHz phonons are resonantly coupled with photons in a superconducting and a nanophotonic cavities.
We demonstrate coherent interactions at cryogenic temperatures via the observation of efficient microwave-optical photon conversion.
This hybrid interface makes a substantial step towards quantum communication at large scale, as well as novel explorations in microwave-optical photon entanglement and quantum sensing mediated by gigahertz phonons.
arXiv Detail & Related papers (2020-01-26T16:33:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.